Sl. No.	Course	Course Title	Course Type	T-P-Pr	Credits
	Code				
1	CUCM2150	Manufacturing Requirements and Planning (Jigs & Fixtures; Process Planning & Cost Estimation)	Theory	2-0-0	2
2	CUCM2151	Conventional Machining for Cylindrical and Prismatic Shape Components	Practice+ Project	0-4-2	6
3	CUCM2152	CNC Machining (0- 6-2)	Practice+ Project	0-6-2	8
4	CUCM2153	Non-Traditional Machining and 3D Printing 0-2-2	Practice+ Project	0-2-2	4
5	CUCM2154	Wood Engineering (0-2-0)	Practice	0-2-0	2
6	CUCM2155	Internship	Project	0-0-4	4
	Total				26

DOMAIN TITLE: Manufacturing (Conventional, CNC and Additive) CMCU2150

Domain Track Objectives:

To provide in-depth technical training & knowledge of machining technologies and machinery which would strengthen product development and industrial-institutional partnership.

Domain Track Course outcomes:

Students will able to

1. Operative machine tools effectively & efficiently

2. Produce components/products by executing various operations with desired accuracy & finish

Manufacturing Requirements and Planning (Jigs & Fixtures; Process Planning & Cost Estimation) 20 Hrs

Course Title	Course Code	Type of Course	T-P-Pr	Pre- Requisite
Manufacturing Requirements and Planning (Jigs & Fixtures; Process Planning & Cost Estimation)	CUCM2150	Theory	2-0-0	Nil

Objective

- To learn basic concepts, functions and design principles of Jigs and Fixtures
- To know the importance of work piece location & clamping
- To learn fundamentals and execution of process planning and cost estimation for a component need to be manufactured

Course outcome

- Necessitate the need of jigs, fixtures and special tools in modern day production
- Identify appropriate combination of tools, jigs and fixture, suitable for a particular machining operation

Course content (20 Hrs)

Module I Introduction to Jigs & Fixtures (2 Hrs)

Theory

Fundamental Concept and Need of Jigs and Fixtures; Jigs and Fixtures design principles and factors; Materials used in jigs & Fixtures.

Module II Locators (3 Hrs)

Theory

General Principles of Degrees of Freedom and Constraints; Foolproofing; Basic rules for location; Locating methods, Types of locators.

Module III Clamps & Indexing Devices (3 Hrs)

Theory

Principles of clamping, Types of clamps, Liner indexing, precision linear indexing and rotary indexing

Module IV Various Jigs & Fixtures (3 Hrs)

Theory Components of Jigs, Types of Jigs, Selection of Jigs

Module V Types of Fixtures (3 Hrs)

Theory

Salient features of milling fixtures, Classification of milling fixtures, Facing fixtures, Slotting Fixtures. Turning (Standard chucks, Spring collets, Cylindrical liners, Mandrels, Turning Fixtures), Grinding, broaching, welding and modular fixtures

Module VI Process Planning: Introduction (3 Hrs) Theory

Objectives and Approaches to Process Planning; Process Planning Activities; Process Planning & Production Planning; Operating Sequences, Setup Documents for Process Planning.

Module VI Introduction to Cost Estimation (3 Hrs) Theory

Objectives of Cost Estimation; Components of a Cost Estimate; Cost Estimation Procedure; Classification of Costing; Elements of Cost; Expenses; Cost accounting, Types of Cost Estimates; Methods of Cost Estimates; Data Requirements and Sources of information; Allowances in Estimation (of Standard Time)

Text Books

- 1. Joshi, P H, Jigs & Fixtures, 2010, 3rd Edition, McGraw Hill.
- 2. Nagpal, G R, Tool Engineering & Design, 2000, Khanna Publishers.

Reference Books

- 1. Venkataraman, K, Design of Jigs, Fixtures & Press Tools, 2015, Wiley & Sons
- 2. Mehta, N K, Metal Cutting and Design of Cutting Tools, Jigs & Fixtures, 2015, McGraw Hill

Course Title	Course Code	Type of course	T-P-Pr	Pre- Requisite
Conventional	CUCM2151	Practice+ Project	0-4-2	
Machining for				
Cylindrical and				
Prismatic Shape				
Components				

Conventional Machining for Cylindrical and Prismatic Shape Components (75 Hrs)

Objective

- To practise principles & requirements of machining and machine tools to get cylindrical surfaces
- To get knowledge on latest technologies used in automobile engineering

Course outcome

- To operate machine effectively & efficiently.
- To produce a component by executing various operations with desired tolerance

Course content

Course Outline

- 1. Cylindrical Turning Operations (Both Internal and External), Knurling, Thread Cutting, Stepped Turning)
- 2. Kinematic Study of Centre Lathe
- 3. Hole Making Operation in Turret Lathe
- 4. Work Holding and Tool Holding Devices For Turning Operations
- 5. Kinematic Study of Pillar Drilling Machine, Radial Drilling Machine and Boring Machine
- 6. Counter Boring, Counter Sinking and Threading Operations
- 7. Finishing Operations
- 8. Kinematic Study of Shaping Machines and Planning Machine
 - 9. Work Holding and Tool Holding Devices Used for Shapers, Planers and Grinders
 - 10. Machining Operations Using Flat Grooves, Flat and Bevel Surfaces, Dovetailed Surfaces
 - 11. Kinematic Study of Horizontal Milling Machine, Vertical Milling Machine
 - 12. Surface Grinding Machines
 - 13. Work Holding and Tool Holding Devices Employed in Milling Machines
 - 14. Flats, Grooves, Slots and Keyways Cutting Using Milling Machine
 - 15. Gear Cutting Using Milling Machine
 - 16. Process Planning of Prismatic Components, Logical sequencing of Operations
 - 17. Estimation of Machining Operations Time and Cost

Text Books

- 1. Rajput, R K, A Text Book of Manufacturing Technology, 2007, 1st Edition, Laxmi Publications.
- 2. Rao, P N, Manufacturing Technology, Volume 2, 2009, 2nd Edition, McGraw Hill.

Reference Books

- 1. Abdel, H, Fundamentals of Machining Processes: Conventional and Nonconventional Processes, 2008, CRC Press.
- 2. Sharma, P C, A Text Book of Production Technology: Manufacturing Processes, 2009, S Chand Publishers.

CNC Machining (100 Hrs)

Course Title	Course Code	Type of Course	T-P-Pr	Pre- requisite
CNC Machining	CUCM2152	Practice+ Project	0-6-2	8

Objective

• To acquire CNC operations skills and accomplish various jobs with desired dimensional accuracy

Course outcome

- Do manual part programming effectively.
- Operate CNC machine to produce component with desired dimensional accuracy

Course Outline

Module I Introduction to CNC (5 Hrs)

Numerical control, Functions of Machine Tool, Concept of numerical control, Feature of CNC, Machine control unit for CNC, Classification of CNC Machine Tool.

Module II CNC Fanuc Controller (20 Hrs)

CNC Fanuc Controller: Fanuc Control Panel, Modes of Control Panel, Hard Key, Soft Key, Chock, Hard Jaw, Soft Jaw, Job setting.

Module III Cutting Tools (10 Hrs)

Nomenclature of CNC Cutting Tools, Identification of Cutting Tools, Manual Cutting Operations, Offsetting and its Types.

Module IV Production Drawing (15 Hrs)

Concept of Projection, Understanding the Views, Orthographic view & Isometric View, Reading of Dimensional Tolerance and Geometrical Tolerance.

Module V NC Programming (35 Hrs)

Developing program for Facing, Turning, Taper Turning, Drilling, Boring and Threading by following Process Plan.

Module VI CNC Milling (5 Hrs)

Fundamentals of CNC Milling, Tool Magazine, ATC, Manual Part Programming for Pocketing.

Module VII 5-Axis Machining (10 Hrs)

Fundamentals of 5-Axis Machining and Turn-Mill Machining.

Text Books

- 1. Groover, M P, CAD/CAM Computer-Aided Design and Manufacturing, 2008, Pearson Education.
- 2. Radhakrishnan, P, CAD/CAM/CIM, 2018, New Age International.

Reference Books

- 1. Jain, R K, Production Technology, 2008, 17th Edition, Khanna Publisers.
- 2. Agarwal, P M, CNC Fundamentals & Programming, 2014, 2nd Edition, Charotar Publishers.

Non-traditional Machining and 3D Printing (50 Hrs)

Course Title	Course Code	Type of Course	T-P-Pr	Pre-Requisite
Non-traditional	CUCM2153	Practice + Project	0-2-2	Nil
Machining and 3D				
Printing				

Objective

• To understand the principle, mechanism of metal removal of various unconventional Machining processes

Course outcome

- Identify different Non-traditional machines and its working principle
- Choose suitable non-traditional machine by identifying different man-machine-material

Course Outline

Module I Introduction (5 Hrs)

Need of Non -traditional Machining, Classification of NTM.

Module II Electric Discharge Machining (20 Hrs)

Electric Discharge Machining Fundaments, Machine Structure, Machine Control Panel, Machine Input and Output Parameters.

Module III EDM Process Parameters (5 Hrs)

Machining Parameters, Plotting of Output graphs, Machining of Brass and Bright Steel. Performance Characteristics, Dielectric Fluid.

Module IV Additive Manufacturing (10 Hrs)

Concept, Rapid Prototyping Process, Various Rapid Prototyping Technologies: SLA, LOM, SLS and FDM.

Module V 3D Printing (10 Hrs)

Fundaments of 3D Printing, Machine structure and its Controller. Advantage, Disadvantage and its Applications, Performance Evaluation.

Text Books

- 1. Pandey, P C, Modern Machining Processes, 2008, McGraw Hill
- 2. Jain, V K, Advanced Machining Processes, 2010, Allied Publishers

Reference Books:

- 1. Abdel, H, Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, 2005, McGraw Hill
- 2. Rao, P N, Manufacturing Technology, Volume 1, 2009, Tata McGraw Hill Publication.

Wood Engineering (25 Hrs)

Course Name	Code	Type of course	T-P-P	Prerequisite
Wood	CUCM2154	Practice	0-2-0	Nil
Engineering				

Course Objective

• To provide in-depth technical training & knowledge of latest processing technologies and machineries used in wood science and engineering which strengthen the Industrial-Institutional partnership

Course Outcome

- Develop manufacturing logic and knowledge
- Operate machines and to use jigs-fixtures effectively
- Build small-scale structures of wood having broader social and institutional context of sustainability

Course Outline

- 1. Introduction, Safety and serviceability, Measurements & Marking
- 2. Identification of Timber & Hand Tools
- 3. Maintenance & Sharpening of Tools, Fasteners Carpentry hand tools and their maintenance.
- 4. Wood joints and Structural assemblies
- 5. Advanced Tools in Tool Engineering (Basic working principles and Operations)
- 6. Product Development: Interior Designs, Furniture, Structures & construction.

Text Books

- 1. Williamson, T G, Wood Engineering and Construction Handbook, 2016, McGrow Hill.
- 2. Garg, S K, Comprehensive Workshop Technology (Manufacturing Processes), 2008, Laxmi Publications.

Reference

- 1. John, K C, Mechanical Workshop Practice, 2nd Edition, 2010, PHI Learning Pvt.Ltd.
- 2. Hasluck, P N, Working with Hand Tools: Essential Techniques for Woodworking, 2012, Skyhorse Publishing.