Industrial Automation

Code	Course Title	(Credit)	T-P-PJ
IACU2100	Industrial Automation	24	5-9-10

Course Code	Course Title	Credits	Type T-P-PJ
CUIA2100	Introduction to Industrial Automation	1	1-0-0
CUIA2101	Advanced Programming & Control Blocks of PLC	3	1-2-0
CUIA2102	Control & Signal Wiring of PLC	2	0-2-0
CUIA2103	SCADA based advanced features	2	1-1-0
CUIA2104	SCADA & PLC based sequential control	1	0-1-0
CUIA2105	Human Machine Interface	3	1-2-0
CUIA2106	OPC server base data fetching & control	2	1-1-0
CUIA2107	Project	6	0-0-6
CUIA2108	Internship	4	0-0-4
	Total Credits	24	

Domain Track Objectives

- To upgrade knowledge levels needed for modern industries.
- Process & sequential control logic of industry.
- Project based training.

Domain Track Course outcomes

- Gain knowledge on advanced industrial automation.
- Understand different types of Devices to which PLC input and output modules are connected.
- Provide the knowledge about understand various types of mobile applications.
- Industry based project & advanced learning.
- Students will develop skill of designing automatic control system and controller for a particular application.

Domain Syllabus

Course - 1: INTRODUCTION TO INDUSTRIAL AUTOMATION

- 1.1 Automation Uses
- 1.2 Automation PLC Basics
- 1.3 Mechanical relays versus PLC
- 1.4 Functions of various blocks and working principle of advanced blocks.

Course - 2: ADVANCED PROGRAMMING & CONTROL BLOCKS OF PLC

- 2.1 CPT, ADD, SUB, MUL, DIV, SQR, NEG, TOD, FRD
- 2.2 MOV, MVM, AND, OR, XOR, NOT. CLR.
- 2.3 BSL, BSR, SQC, SQL, SQO, FFL, FFU, LFL, LFU
- 2.4 JMP, LBL, JSR, MCR
- 2.5 Connecting PLC software with SCADA software

Practice:

- P2.1 Comparison of industry based analog signals.
- P2,2 Detecting different product output of an industry
- P2.3 Sequential control of an industry by using advanced blocks.
- P2.4 Emergency control system of an industry
- P2.5 Connecting PLC software with SCADA software

Course - 3: CONTROL & SIGNAL WIRING OF PLC

- 3.1 Control wiring of PLC.
- 3.2 PLC, Sensor and field instruments signal flow wiring.
- 3.3 Device connectivity

Practice:

P3.1 PLC input/output wiring concept.

- P3.2 Connecting relay, contactor, sensors and other field instruments.
- P3.3 Controlling an industry motor using STAR-DELTA connection

Course – 4: SCADA BASED ADVANCED FEATURES

- 4.1 Alarms
- 4.2 Trends, Data base connectivity & Report generation
- 4.3 Recipe management
- 4.4 Security

Practice:

- P4.1 Data fetching and representing on graph and excel
- P4.2 Advanced controlling of industry by using SCADA

Course - 5: SCADA & PLC BASED SEQUENTIAL CONTROL

- 5.1 Script
- 5.2 Networking
- 5.3 Device connectivity.

Practice:

- P5.1 Script
- P5.2 Networking
- P5.3 Device connectivity

Course – 6: HUMAN MACHINE INTERFACE

- 6.1 What is HMI. Use of HMI
- 6.2 Concept of different operational features
- 6.3 Connectivity of HMI and PLC.

Practice:

- P6.1 Alarms
- P6.2 Security
- P6.3 Recipe manager

Course – 7: OPC SERVER BASE DATA FETCHING & CONTROL

- 7.1 Study of Open Platform Communications
- 7.2 OPC to control PLC, SCADA.
- 7.3 OPC based different protocol concept.
- 7.4 Data handling using OPC.

Practice:

- P7.1 Installation of OPC
- P7.2 OPC protocols
- P7.3 Connectivity of PLC, SCADA & ARDUINO to OPC.