		DOMAIN		
CUTM	MLCU2000	Data Science and Machine Learning	26	2+9+15
	CUML2010	ML for Predictive Analysis	4	0+2+2
	CUML2011	ML for Image Analytics	4	0+2+2
	CUML 2009	Mathematics for ML	3	2+1+0
	CUML 2008	IoT Analytics	4	0+2+2
	CUML 2012	Digital video Processing	3	0+2+1
	CUML2004	ML for Hyperspectral imaging (Elective)	6	0+4+2
	CUML2005	Internship	4	0+0+4
	CUML2006	Project	4	0+0+4

Course Outline

Code	Course Title	T-P-Pj (Credit)	Prerequisite
MLCU2000	Data Science and Machine Learning	2-9-15	

Objective

- Understand the scope, stages, applications, effects and challenges of ML.
- Understand the mathematical relationships within and across ML algorithms and the paradigms of supervised and unsupervised learning.

Course outcome

- Ability to Create and incorporate ML solutions in their respective fields of study.
- *Get skill to design and implement various machine learning algorithms in a range of real-world applications.*
- Ability to design product/ publish article/ file patent.
- Able to get jobs in AI/ML field

Course Content

ML for Predictive Analysis (0+2+2)

https://careerfoundry.com/en/blog/data-analytics/regression-vs-classification/

Project/Task: (Choose two projects, Prediction and Classification)

Time Series Analysis

Health Care System

Concept Required:

3.1 Data pre-processing: -

- Accessing / collecting the datasets from different online repository.
- Missing values handling, noise reduction, finding Correlation between features, outlier elimination.
- Label Encoding / Encoding the categorical data
- Splitting the dataset
- Data Normalization

3.2 Learning Algorithms: -

- Supervised Learning Algorithms
- Unsupervised Learning Algorithms

3.3 Feature extraction and selection: -

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Different Feature Selection Techniques / Algorithms

3.4 Model building: -

- Regression (Linear, Polynomial, multiple, logistic), Decision Tree, Random Forest.
- Artificial Neural Network (Feed Forward Neural Network, Gradient Descent, Back Propagation Neural Network).
- Convolutional Neural Network
- Other Pretrained Models

3.5 Performance measures: -

- Perdition: Root Mean Square Error (RMSE), Average Percentage Error (APE), Mean Average Percentage Error (MAPE).
- Classification: Confusion Matrix (TN, TP, FP, FN), Sensitivity, Specificity, Gmean, Fscore, Overall Accuracy, (Receiver Operating Characteristic) ROC Curve. Area under Curve (AUC)

3.6 Reading and Writing Research Articles

ML for Image Analytics (0-2-2)

Project/Task: (Choose one among six Tasks)

Detection of optometry diseases using retinal fundus imaging.

- 1. Diabetic Retinopathy
- 2. Glaucoma
- 3. Cataract

Detection of various diseases using X-ray imaging.

1. Covid19

Leaf disease classification using RGB images.

- 1. Tomato leaf
- 2. Potato leaf

Concept Required:

Image Pre-processing:-

- Accessing individual pixels using matrix concept
- Image resize, grey scale conversion, Colour channel splitting
- Histogram equalisation (CLACH).

Image Feature Extraction: -

- Edge detection (Sobel, Canny), Morphological operations
- Image segmentation, Image Thresholding, Binary conversion
- Cluster based segmentation
- Feature extraction based on size, shape and colour
- Feature extraction using predefined functions: SIFT, SURF, STAR, ORB.
- Feature Extraction using convolutional neural network (CNN).

Creation of Feature Matrix by combining Extracted Features: -

- Matrix flattening, Horizontal stacking, Vertical stacking, padding.
- Splitting the feature matrix (training/testing) and labelling.

Classification algorithms: -

- Support vector machine (SVM)
- Different kernels of SVM (linear, polynomial, radial basis function).
- Gradient Boosting (GB)

• Multi-layer Perceptron (MLP), Deep Learning.

Mathematics for ML (2+1+0)

When Models Meet Data:-

- Data, Models, and Learning
- Empirical Risk Minimization
- Parameter Estimation
- Probabilistic Modeling and Inference
- Directed Graphical Models
- Model Selection

Linear Regression:-

- Problem Formulation
- Parameter Estimation
- Bayesian Linear Regression
- Maximum Likelihood as Orthogonal Projection

Dimensionality Reduction with Principal Component Analysis:-

- Problem Setting
- Maximum Variance Perspective
- Projection Perspective
- Eigenvector Computation and Low-Rank Approximations
- PCA in High Dimensions
- Key Steps of PCA in Practice
- Latent Variable Perspective

Density Estimation with Gaussian Mixture Models:-

- Gaussian Mixture Model
- Parameter Learning via Maximum Likelihood
- EM Algorithm
- Latent-Variable Perspective

Classification with Support Vector Machines:-

- Separating Hyperplanes
- Primal Support Vector Machine
- Dual Support Vector Machine
- Kernels
- Numerical Solution

Practice:

• Curve Fitting in Python.

- Exploratory Data Analysis in Python.
- Kernel Density Estimation in Python.
- Probability Distribution Function Plotting in Python.
- Cumulative Distribution Function Plotting in Python.
- Dimensionality Reduction and Feature Extraction in Python.

References:

- 1. Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.
- 2. https://youtube.com/playlist?list=PLLy_2iUCG87D1CXFxE-SxCFZUiJzQ3IvE

IoT Analytics (0+2+2)

Defining IoT Analytics and Challenges

IoT

Benefits of Deploying IoT

End to End IoT architecture

IoT challenges

IoT Protocols

1 Wireless Protocol

Connectivity Protocols (when Power is Limited)

Bluetooth Low Energy (BLE)

Zigbee

LoRaWAN

NFC

2 Connectivity Protocols (when Power is Not a problem)

Wifi

3 Data Communication Protocol

MQTT

Web-Socket

HTTP

2 Sensors

Types of Sensors based on communication-I2C, SPI

Types of Sensors based on Application

3 Overview of 32 -bit Controller

ESP8266

ESP32

Raspberry Pi

4 AWS IoT for Cloud

AWS IoT Core services

AWS IoT Analytics services

AWS DynamoDB Services

5 Thingspeak for IoT

Getting and posting Data to IoT Cloud using ESP devices

Posting Data to IoT Cloud using Raspberry Pi

6 ThingWorx for Industrial IoT

Building Dashboard on Thingworx platform

Binding the senor value to the dashboard

Text Book:

1. Minteer, Andrew. Analytics for the Internet of Things (IoT). Packt Publishing Ltd, 2017.

Reference Books:

2. Geng, Hwaiyu, ed. *Internet of things and data analytics handbook*. John Wiley & Sons, 2017.

Digital video Processing (0+2+1)

UNIT 1:

Fundamentals of Video Processing: Digital Video Acquisition, Principles of Color Video, Video Camera, Video Display, **Analog Vs Digital Video**: Progressive Vs Interlaced scans, Signal, Bandwidth Characterization of a Digital Video Signal.

Practice:

- Read and play video files
- Extract frames from video files
- Combine frames to create a video file

UNIT 2:

Fourier Analysis of Digital Video Signals: Spatial and Temporal resolution, Fourier Analysis of Digital Video Signals, **Spatial-Temporal Sampling:** Temporal Frequency Response and Flicker Perception. Spatial Frequency Response, Spatiotemporal Frequency Response, Smooth Pursuit Eye Movement

Prctice:

- Applying fourier transformation on video
- Time domain analysis
- Frequency domain Analysis

UNIT 3:

Digital Video Formats: Significance of Video Formatting, Data rate and bandwidth trade-off, **File Formats:** MP4, MOV, WMV, AVCHD, FLV, AVI, WebM, MKV

Digital Video Compression Standards: Digital Video Compression Metrics, Digital Video Storage Precisions, Significance of Video compression, **Video Compression Codec's**: Motion JPEG, JPEG 2000, H.264/MPEG-4 AVC, VP8, HEVC, H.265 High Efficiency Video Codec.

Prctice:

- Conversion of video files from one format to another.
- Using Motion JPEG Codec
- Using MPEG-4 Codec
- Using H.265 Codec

UNIT 4:

Digital Video Editing Basics: Video Editing Types- Online, Offline, Linear, Non-linear, Assemble, Insert, Rough-cut, Video Shot Transition Effects: Cut, Fade, Wipe, Dissolve, B-roll, Video Shot Boundary Detection Methods: pixel differences, statistical differences, histogram comparisons, edge differences and motion vectors. Video Shot Detection Performance Metrics: ROC Curves, Recall, Precision, F-Measure

Practice:

- Video Shot Detection using pixel Difference
- Video Shot Detection using Histogram based methods
- Video Shot Detection using Edge based methods
- Video Shot Detection using Motion Vectors

Project List

- 1) Creating a VIDEO object detection system
- 2) Vehicle detection in Videos using OpenCV and Python
- 3) Detecting faces in live camera feed with identification of the person.

TEXT BOOK:

- 1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", Pearson Education, 3rd Edition, 2009.
- 2. Handbook of Image and Video processing Al Bovik (Alan C Bovik), Academic Press,

REFERENCE BOOK:

- 1. Fundamentals of Digital Image Processing", Anil K. Jain, PHI, 1995.
- 2. "Digital Image Processing", William. K.Pratt, Wiley Interscience, 2nd Ed, 1991.

MI for Hyperspectral imaging (0-4-2)

Project/Task: (Choose one among four Tasks) Agriculture

- 1. Crop yield prediction.
- 2. Crop quality prediction
- 3. Soil health monitoring

Mining

1. Iron ore quality prediction

Concept Required:

Introduction to Remote Sensing: -

- Multi-Spectral Imagery (MSI)
- Hyperspectral Imagery (HSI)

Scientific Principles:

- Physics of imaging spectroscopy
- Electromagnetic propagation
- Sensor physics
- Atmospheric Corrections.

Hyperspectral Concepts and System Trade-offs:-

- Signal-to-Noise ratio (SNR)
- Spectral resolution, sampling.

HSI Data Processing Techniques:-

- Spectral angle mapping
- Principal Component Analysis (PCA)
- Minimum Noise Fraction (MNF)
- Spectral feature fitting.

Classification Techniques:-

- Support Vector Machine (SVM)
- Partial Least Squares Regression (PLSR)
- Neural Network
- Deep learning and CNN

Clustering Techniques:-

• K-mean clustering

Project (0-0-4)

Internship (0-0-4)

Course Outline Prepared by: Prof. (Dr.) Sujata Chakravarty