ISSN 2395-6216 (PRINT VERSION) ISSN 2395-6224 (ONLINE VERSION)

Centurion Journal of Multidisciplinary Research

Special issue : Proceedings of National Conference on Computational Composite: Power of Synthia 15-17 November 2020

Shaping Lives... Empowering Communities...

centurion university of technology and management

Centurion Journal of Multidisciplinary Research

ISSN 2395-6216 (PRINT VERSION) ISSN 2395-6224 (ONLINE VERSION)

Centurion Journal of Multidisciplinary Research is published by Centurion University of Technology and Management, Odisha, bi-annually. Copyright @ 2020 Centurion University of Technology and Management. All rights reserved. No portion of the contents may be reproduced in any form without permission in writing from the publisher.

Annual Subscription: Rs 300 (within India) excluding postage charges. Outside India USD 30, excluding postage charges.

The designations employed and the presentation of material in the CIMR journal do not imply the expression of an opinion whatsoever on the part of Centurion University of Technology and Management concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries.

The authors are responsible for the choice and the presentation of the facts contained in the journal and for the opinions expressed therein, which are not necessarily those of Centurion University of Technology and Management.

@Centurion University of Technology and Management, 2020

Published by:

Registrar, Centurion University of Technology and Management R. Sitapur, Parlakhemundi, Gajapati, Odisha Pin – 761211

Printer:

Srimandira Publication EPF Colony, E-Block, Saheed Nagar, Bhubaneswar, Odisha 751007 Centurion Journal of Multidisciplinary Research

Volume 10 Number 2 Novemver 2020

 Special issue : Proceedings of National Conference on Computational Composite:

 Power of Synthia

 15-17 November 2020

 organized by: Cemistry and Physics Departments

 Centurion University of Technology and management, Odisha, India

CENTURION UNIVERSITY PRESS, ODISHA, INDIA

THE VISION

The objective of the conference was to encourage mainly the students to use computational tools in composite design.

Composites contain more than one material mixed in a way that the constituent materials can contribute to the property of the composite. Thus, by blending different materials one can save the cost of developing a new material with the desired properties.

In this conference papers different properties of polymeric composite materials were presented. The properties were calculated using the Synthia module of Biovia Materials Studio. Synthia uses empirical and semiempirical methods based on connectivity indices to predict various properties of composites.

The following properties were predicted:

A. Permeability related properties:

1. Glass transition temperature: It is defined as the temperature at which the amorphous region of a polymer shows transition from rigid state to flexible state (solid state to rubbery state).

2. Density: Density of a polymer represents the mass of the polymer per unit volume.

3. Oxygen permeability: The permeability of oxygen represents the ease of mass transfer of oxygen through the polymer. It gives an idea of the porosity and pore size of the polymer.

4. Nitrogen permeability: The permeability of nitrogen represents the ease of mass transfer of nitrogen through the polymer. It gives an idea of the porosity and pore size of the polymer.

5. Carbon-di-oxide permeability: The permeability of carbon-di-oxide represents the ease of mass transfer of carbon-di-oxide through the polymer. It gives an idea of the porosity and pore size of the polymer.

B. Optical, electric and thermal properties:

1. Refractive index: It is an important optical property of the polymer. It gives an idea about the transparency and optical density of the polymer.

2. Volume resistivity: It presents the resistance offered to an electric current by a cubical sample of a polymer. Higher resistance implies lower electrical conductivity.

3. Dielectric constant: It is the factor by which the electric field between charges decreases with respect to vacuum. It gives an idea of the electrical susceptibility of the polymer.

4. Coefficient of volumetric thermal expansion: It represents increase in volume of a polymer per unit original volume per degree rise in temperature. It gives an idea of dimensional change of the polymer with change in temperature.

5. Thermal conductivity: It represents the rate at which heat is transferred by conduction through unit cross-section area of the polymer, due to a temperature gradient existing perpendicular to the area.

C. Mechanical properties:

1. Bulk modulus: Bulk modulus indicates the increase in volume of a polymer for infinitesimal decrease in applied pressure.

2. Young's modulus: It gives an idea of the relative change in length of the polymer due to applied force. It is the ration of stress and strain for a polymer.

3. Shear modulus: It is a measure of the rigidity of a polymer, and is presented as the ratio of shear stress to shear strain.

4. Poisson's ratio: It is a dimensionless quantity represented as the ratio of transverse strain to longitudinal strain.

5. Cohesive energy (Fedors) at 298K: It represents the energy required to separate the molecules of a polymer. A higher value indicates greater strength of the polymer.

Index				
Title	Pages			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethylene	1 to 2			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethylene	3 to 4			
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethylene	5 to 6			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and 1_butene	7 to 8			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and 1_butene	9 to 10			
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and 1_butene	11 to 12			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and isobutene	13 to 14			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and isobutene	15 to 16			
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and isobutene	17 to 18			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and propylene	19 to 20			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and propylene	21 to 22			
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and propylene	23 to 24			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and acrylonitrile	25 to 26			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and acrylonitrile	27 to 28			
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and acrylonitrile	29 to 30			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and dichloro_ethylene	31 to 32			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and dichloro_ethylene	33 to 34			
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and dichloro_ethylene	35 to 36			
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and difluoro_ethylene	37 to 38			
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and difluoro_ethylene	39 to 40			

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and difluoro_ethylene	41 to 42
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and styrene	43 to 44
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and styrene	45 to 46
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and styrene	47 to 48
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene	49 to 50
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene	51 to 52
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene	53 to 54
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_acetate	55 to 56
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_acetate	57 to 58
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_acetate	59 to 60
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_chloride	61 to 62
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_chloride	63 to 64
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_chloride	65 to 66
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_ether	67 to 68
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_ether	69 to 70
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_ether	71 to 72
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_amide	73 to 74
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_amide	75 to 76
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_amide	77 to 78
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_fluoride	79 to 80
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_fluoride	81 to 82

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_fluoride	83 to 84
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethyl_urethane	85 to 86
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethyl_urethane	87 to 88
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethyl_urethane	89 to 90
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and urethane	91 to 92
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and urethane	93 to 94
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and urethane	95 to 96
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and 1_butene	97 to 98
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and 1_butene	99 to 100
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and 1_butene	101 to 102
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and ethylene	103 to 104
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and ethylene	105 to 106
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and ethylene	107 to 108
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and isobutene	109 to 110
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and isobutene	111 to 112
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and isobutene	113 to 114
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and propylene	115 to 116
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and propylene	117 to 118
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and propylene	119 to 120
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and acrylonitrile	121 to 122
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and acrylonitrile	123 to 124

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and acrylonitrile	125 to 126
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and dichloro_ethylene	127 to 128
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and dichloro_ethylene	129 to 130
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and dichloro_ethylene	131 to 132
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and difluoro_ethylene	133 to 134
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and difluoro_ethylene	135 to 136
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and difluoro_ethylene	137 to 138
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and meth_styrene	139 to 140
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and meth_styrene	141 to 142
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and meth_styrene	143 to 144
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and styrene	145 to 146
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and styrene	147 to 148
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and styrene	149 to 150
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene	151 to 152
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene	153 to 154
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene	155 to 156
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and vinyl_acetate	157 to 158
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and vinyl_acetate	159 to 160
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and vinyl_acetate	161 to 162
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and vinyl_chloride	163 to 164
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and vinyl_chloride	165 to 166

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and vinyl_chloride	167 to 168
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and butylene_isophthalate	169 to 170
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and butylene_isophthalate	171 to 172
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and butylene_isophthalate	173 to 174
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and butylene_terepthalate	175 to 176
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and butylene_terepthalate	177 to 178
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and butylene_terepthalate	179 to 180
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and butylene_isophthalate	181 to 182
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and butylene_isophthalate	183 to 184
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and butylene_isophthalate	185 to 186
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and butylene_terepthalate	187 to 188
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and butylene_terepthalate	189 to 190
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and butylene_terepthalate	191 to 192
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and ethylene_isophthalate	193 to 194
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and ethylene_isophthalate	195 to 196
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and ethylene_isophthalate	197 to 198
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and ethylene_terepthalate	199 to 200
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and ethylene_terepthalate	201 to 202
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and ethylene_terepthalate	203 to 204
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxyethylene	205 to 206
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxyethylene	207 to 208

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxyethylene	209 to 210
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxymethylene	211 to 212
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxymethylene	213 to 214
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxymethylene	215 to 216
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxyphenyl	217 to 218
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxyphenyl	219 to 220
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxyphenyl	221 to 222
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxypropylene	223 to 224
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxypropylene	225 to 226
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxypropylene	227 to 228
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxyethylene	229 to 230
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxyethylene	231 to 232
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxyethylene	233 to 234
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxymethylene	235 to 236
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxymethylene	237 to 238
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxymethylene	239 to 240
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxyphenyl	241 to 242
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxyphenyl	243 to 244
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxyphenyl	245 to 246
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxypropylene	247 to 248
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxypropylene	249 to 250

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxypropylene	251 to 252
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benzamide	253 to 254
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benzamide	255 to 256
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benzamide	257 to 258
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and nylon6	259 to 260
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and nylon6	261 to 262
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and nylon6	263 to 264
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and nylon12	265 to 266
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and nylon12	267 to 268
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and nylon12	269 to 270
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and nylon66	271 to 272
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and nylon66	273 to 274
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and nylon66	275 to 276
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and benzamide	277 to 278
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and benzamide	279 to 280
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and benzamide	281 to 282
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and nylon12	283 to 284
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and nylon12	285 to 286
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and nylon12	287 to 288
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and nylon6	289 to 290
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and nylon6	291 to 292

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and nylon6	293 to 294
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and nylon66	295 to 296
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and nylon66	297 to 298
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and nylon66	299 to 300
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and 25_thiazole	301 to 302
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and 25_thiazole	303 to 304
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and 25_thiazole	305 to 306
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benz_imidazoles	307 to 308
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benz_imidazoles	309 to 310
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benz_imidazoles	311 to 312
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benzimid	313 to 314
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benzimid	315 to 316
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benzimid	317 to 318
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benzothiazol	319 to 320
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benzothiazol	321 to 322
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benzothiazol	323 to 324
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and cyclopentylm	325 to 326
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and cyclopentylm	327 to 328
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and cyclopentylm	329 to 330
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethylene_terepthalate	331 to 332
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethylene_terepthalate	333 to 334

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethylene_terepthalate	335 to 336
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and 25_thiazole	337 to 338
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and 25_thiazole	339 to 340
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and 25_thiazole	341 to 342
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and benz_imidazoles	343 to 344
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and benz_imidazoles	345 to 346
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and benz_imidazoles	347 to 348
Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and cyclopentylm	349 to 350
Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and cyclopentylm	351 to 352
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and cyclopentylm	353 to 354
Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethylene_isophthalate	355 to 356
Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethylene_isophthalate	357 to 358
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethylene_isophthalate	359 to 360

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethylene

Anshuman Dash¹, Dr Nibedita Nayak²

¹180705120057@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene

Property		Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	191.974	305.230	414.398
Density	kg per	0.872	1.001	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	745.304	547.020	288.203
permeabili	m			
ty				
Nitrogen	Per	216.848	155.250	77.690
permeabili	m			
ty				
Carbon	Per	3915.815	2795.767	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 226.5 oC per unit weight	increases at rate 218.3 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.257 kg per cubic metre	increases at rate 0.347 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 396.6 Perm per unit	decreases at rate 517.6 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	decreases at rate 123.2 Perm per unit	decreases at rate 155.1 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 2240.1 Perm per unit	decreases at rate 2809.4 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethylene

Shiba Santosh Meher¹, Dr Padmaja Pattanayak²

¹180705120040@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

	-				
Prope	erty	Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.465	1.516	1.587	
index					
Volume	Ohm-	2215376000000000000.000	720375900000000000.000	155017300000000000.000	
resistivity	metre				

Table 1. Properties of composite of bisphen dimeth carbonate and ethylene

Dielectric	0	2.327	2.571	2.905
constant				
Coefficien	/K	900.860	313.625	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.172	0.182	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.101 0 per unit weight	increases at rate 0.143 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 299000020000000000	decreases at rate 113071720000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.488 0 per unit weight	increases at rate 0.667 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1174.5 /K per unit weight	decreases at rate 153.6 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.021 W/(m·K) per unit	increases at rate 0.02 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethylene

Tapaswini Swain¹, Dr.Pratap Chhottaray²

¹180705100066@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of bisphen	dimeth	carbonate	and ethyl	lene
	1	1				2	

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	2466.650	2550.975	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	2.566	1227.433	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	0.855	432.254	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.500	0.420	0.409
s ratio				
Cohesiv	kiloJoul	9.883	18.147	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 168.7 newtons per square metre per unit weight fraction	increases at rate 2960.5 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 2449.733 newtons per square metre per unit weight fraction	increases at rate 1969.856 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 862.796 newtons per square metre per unit weight fraction	increases at rate 706.178 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.16 0 per unit weight fraction	decreases at rate 0.0225 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 16.529 kiloJoule per mole per unit weight fraction	increases at rate 149.826 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and 1_butene

Shaktiman Tripathy¹, Dr Tapan Dash²

¹190705120001@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and 1_butene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and 1_butene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and 1_butene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	212.969	314.759	414.398	
Density	kg per	0.855	0.990	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1026.874	665.300	288.203
permeabili	m			
ty				
Nitrogen	Per	306.565	191.812	77.690
permeabili	m			
ty				
Carbon	Per	5551.752	3460.222	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 203.6 oC per unit weight	increases at rate 199.3 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.269 kg per cubic metre per unit weight fraction	increases at rate 0.369 kg per cubic metre per unit weight fraction	
Oxygen permeability	decreases at rate 723.1 Perm per unit weight fraction	decreases at rate 754.2 Perm per unit weight fraction	
Nitrogen permeability	decreases at rate 229.5 Perm per unit	decreases at rate 228.2 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 4183.1 Perm per unit	decreases at rate 4138.3 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and 1_butene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and 1_butene

Latika Ratna Mohanta¹, Dr. Srikant Sahu²

¹180705100055@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and 1_butene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and 1_butene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of bisphen	dimeth	carbonate and	1 butene
	1	1	1 -		_	_

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.467	1.516	1.587
index				
Volume	Ohm-	270639000000000000000000	81660830000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	2.284	2.544	2.905
constant				
Coefficien	/K	834.125	304.993	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.134	0.164	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.099 0 per unit weight	increases at rate 0.142 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 377956340000000000	decreases at rate 132318200000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.52 0 per unit weight	increases at rate 0.722 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1058.3 /K per unit weight	decreases at rate 136.3 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.06 W/(m·K) per unit	increases at rate 0.057 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and 1_butene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and 1_butene

Sarmistha Priyadarshini Behera¹, Mr. Chittaranjan Routray²

¹180705100079@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and 1_butene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and 1_butene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	. Properties	of composite	of bisphen_	dimeth	carbonate and	1_	butene
----------	--------------	--------------	-------------	--------	---------------	----	--------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	2297.805	2652.235	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1.083	1614.827	2212.361
s	s per			
5	metre			
Shear	newton	0.361	577.333	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.500	0.399	0.409
s ratio				
Cohesiv	kiloJoul	19.092	32.462	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 708.9 newtons per square metre per unit weight fraction	increases at rate 2758 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 3227.488 newtons per square metre per unit weight fraction	increases at rate 1195.068 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 1153.943 newtons per square metre per unit weight fraction	increases at rate 416.02 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.2028 0 per unit weight fraction	increases at rate 0.02 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 26.742 kiloJoule per mole per unit weight fraction	increases at rate 121.195 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and 1_butene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and isobutene

Kiranbala Giri¹, Dr. Ashish Kumar Sahoo²

¹180705100020@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and isobutene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and isobutene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and isobutene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	183.823	300.389	414.398	
Density	kg per	0.856	0.990	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	2438.329	1094.444	288.203
permeabili	m			
ty				
Nitrogen	Per	780.327	328.415	77.690
permeabili	m			
ty				
Carbon	Per	14240.660	5950.816	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 233.1 oC per unit weight	increases at rate 228 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.269 kg per cubic metre per unit weight fraction	increases at rate 0.368 kg per cubic metre per unit weight fraction	
Oxygen permeability	decreases at rate 2687.8 Perm per unit weight fraction	decreases at rate 1612.5 Perm per unit weight fraction	
Nitrogen permeability	decreases at rate 903.8 Perm per unit	decreases at rate 501.5 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 16579.7 Perm per unit	decreases at rate 9119.5 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and isobutene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and isobutene

Sourav Dash¹, Dr Tapan Dash²

¹180705120020@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and isobutene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and isobutene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	Pro	nerties	of com	posite o	f bisphen	dimeth	carbonate and isob	utene
	. 1 10	pernes	or com	posite o	i bispiten	unnem	caroonate and 1500	utene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.479	1.524	1.587	
index					
Volume	Ohm-	36081020000000000000000000	929159900000000000.000	155017300000000000.000	
resistivity	metre				

-				
Dielectric	0	2.221	2.516	2.905
constant				
Coefficien	/K	929.737	318.200	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.131	0.162	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.089 0 per unit weight	increases at rate 0.127 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 535788420000000000	decreases at rate 154828520000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.589 0 per unit weight	increases at rate 0.778 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1223.1 /K per unit weight	decreases at rate 162.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.063 W/(m·K) per unit	increases at rate 0.06 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and isobutene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and isobutene

Prasanta Kumar Sahoo¹, Sravan Sahoo²

¹190705100019@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and isobutene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and isobutene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

	Table 1.	Properties	of composite	of bisphen	dimeth	carbonate a	and isobutene
--	----------	------------	--------------	------------	--------	-------------	---------------

Prop	berty	Results for				
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of		
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon		
		ate	ate	ate		
Bulk	newton	1332.498	2129.723	4031.244		
modulu	s per					
S	square					
	metre					

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Young's	newton	1.019	1277.192	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	0.340	456.124	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.500	0.400	0.409
s ratio				
Cohesiv	kiloJoul	16.870	30.643	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 1594.5 newtons per square metre per unit weight fraction	increases at rate 3803 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 2552.346 newtons per square metre per unit weight fraction	increases at rate 1870.338 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 911.568 newtons per square metre per unit weight fraction	increases at rate 658.438 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.1996 0 per unit weight fraction	increases at rate 0.017 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 27.545 kiloJoule per mole per unit weight fraction	increases at rate 124.834 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and isobutene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and propylene

Anil Kumar Mallick¹, Dr. Ashish Kumar Sahoo²

¹180705100013@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and propylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and propylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and propylene

Proper	ty	Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	229.892	323.166	414.398	
Density	kg per	0.858	0.992	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	1316.654	766.539	288.203
permeabili	m			
ty				
Nitrogen	Per	401.007	223.530	77.690
permeabili	m			
ty				
Carbon	Per	7278.144	4037.496	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition temperature	increases at rate 186.5 oC per unit weight fraction	increases at rate 182.5 oC per unit weight fraction
Density	increases at rate 0.267 kg per cubic metre per unit weight fraction	increases at rate 0.365 kg per cubic metre per unit weight fraction
Oxygen permeability	decreases at rate 1100.2 Perm per unit weight fraction	decreases at rate 956.7 Perm per unit weight fraction
Nitrogen permeability	decreases at rate 355 Perm per unit weight fraction	decreases at rate 291.7 Perm per unit weight fraction
Carbon dioxide permeability	decreases at rate 6481.3 Perm per unit weight fraction	decreases at rate 5292.8 Perm per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and propylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and propylene

Sanghamitra Mohapatra¹, Dojalisa Sahu²

¹190705100010@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and propylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and propylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

- 11 4	-		•			0.1	•	1	4. 4		1		1
Table 1	Prot	nerties	ofi	nm	nosite	ofil	high	hen	dimeth	carbonate	and	nrot	wlene
1 abic 1.	110	pernes	UI V	Joint	JUSIL	UI U	usp	non	unneun	caroonate	anu	prop	Jylene

Prope	erty	Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.471	1.519	1.587	
index					
Volume	Ohm-	29558560000000000000000000	849388600000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	2.265	2.535	2.905
constant				
Coefficien	/K	787.126	297.762	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.143	0.168	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.095 0 per unit weight	increases at rate 0.136 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 421293480000000000	decreases at rate 138874260000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.542 0 per unit weight	increases at rate 0.739 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 978.7 /K per unit weight	decreases at rate 121.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.051 W/(m·K) per unit	increases at rate 0.048 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and propylene. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and propylene

Rama Kanta Sahoo¹, Mrs. Suchismita Acharya²

¹180705100095@cutm.ac.in, ²suchismita.acharya@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and propylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and propylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

	Table 1. P	roperties o	f composite of	f bisphen	dimeth	carbonate and	propylene
--	------------	-------------	----------------	-----------	--------	---------------	-----------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	1976.690	2706.830	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1.770	1502.795	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	0.590	533.864	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.500	0.407	0.409
s ratio				
Cohesiv	kiloJoul	13.775	25.032	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 1460.3 newtons per square metre per unit weight fraction	increases at rate 2648.8 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 3002.051 newtons per square metre per unit weight fraction	increases at rate 1419.132 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 1066.549 newtons per square metre per unit weight fraction	increases at rate 502.957 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.1848 0 per unit weight fraction	increases at rate 0.0021 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 22.515 kiloJoule per mole per unit weight fraction	increases at rate 136.055 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and propylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and acrylonitrile

Subhashree Behera¹, Dr. Dojalisa Sahu²

¹180705100050@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and acrylonitrile. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and acrylonitrile on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and acrylonitrile

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	361.527	388.227	414.398	
Density	kg per	1.177	1.176	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	0.082	4.748	288.203
permeabili	m			
ty				
Nitrogen	Per	0.012	0.920	77.690
permeabili	m			
ty				
Carbon	Per	0.192	15.886	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition temperature	increases at rate 53.4 oC per unit weight fraction	increases at rate 52.3 oC per unit weight fraction	
Density	decreases at rate 0.003 kg per cubic metre per unit weight fraction	decreases at rate 0.003 kg per cubic metre per unit weight fraction	
Oxygen permeability	increases at rate 9.3 Perm per unit weight fraction	increases at rate 566.9 Perm per unit weight fraction	
Nitrogen permeability	increases at rate 1.8 Perm per unit weight fraction	increases at rate 153.5 Perm per unit weight fraction	
Carbon dioxide permeability	increases at rate 31.4 Perm per unit weight fraction	increases at rate 2750.4 Perm per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and acrylonitrile. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and acrylonitrile

Alisha Priyadarshini¹, Dr Padmaja Pattanayak²

¹180705120041@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and acrylonitrile. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and acrylonitrile on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1 P	roperties o	f composit	te of hisnher	dimeth	carbonate a	nd acrylonitrile
	10pernes 0	i composi	ie of ofspher	unneur	carbonate a	

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.542	1.565	1.587	
index					
Volume	Ohm-	1041069000000000.000	1069112000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	3.991	3.485	2.905
constant				
Coefficien	/K	268.697	251.603	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.178	0.185	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.044 0 per unit weight	increases at rate 0.045 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 1930010200000000	increases at rate 28865236000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.012 0 per unit weight	decreases at rate 1.161 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 34.2 /K per unit weight	decreases at rate 29.5 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.014 W/(m·K) per unit	increases at rate 0.014 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and acrylonitrile. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and acrylonitrile

Nibedita Mohanty¹, Dr Nibedita Nayak²

¹180705120051@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and acrylonitrile. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and acrylonitrile on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and acrylonitrile

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	6497.867	5343.638	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	3736.424	3005.345	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	1330.481	1068.556	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.404	0.406	0.409
s ratio				
Cohesiv	kiloJoul	34.157	44.326	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 2308.5 newtons per square metre per unit weight fraction	decreases at rate 2624.8 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 1462.158 newtons per square metre per unit weight fraction	decreases at rate 1585.968 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 523.85 newtons per square metre per unit weight fraction	decreases at rate 566.427 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0042 0 per unit weight fraction	increases at rate 0.0045 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 20.339 kiloJoule per mole per unit weight fraction	increases at rate 97.467 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and acrylonitrile. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and dichloro_ethylene

Itishree Moharana¹, Mr. Chittaranjan Routray²

¹180705100036@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and dichloro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and dichloro_ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and dichloro_ethylene

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	277.943	365.429	414.398
Density	kg per	1.689	1.386	1.174

	cubi			
	с			
	metr			
	e			
Oxygen	Per	0.982	33.913	288.203
permeabili	m			
ty				
Nitrogen	Per	0.168	7.698	77.690
permeabili	m			
ty				
Carbon	Per	2.853	135.229	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 175 oC per unit weight	increases at rate 97.9 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.608 kg per cubic metre	decreases at rate 0.422 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 65.9 Perm per unit weight	increases at rate 508.6 Perm per unit
	fraction	weight fraction
Nitrogen permeability	increases at rate 15.1 Perm per unit weight	increases at rate 140 Perm per unit weight
	fraction	fraction
Carbon dioxide	increases at rate 264.8 Perm per unit	increases at rate 2511.7 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and dichloro_ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and dichloro_ethylene

Suchismita Khatei¹, Dr.Pratap Chhottaray²

¹180705100063@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and dichloro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and dichloro_ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and dichloro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.608	1.596	1.587	
index					
Volume	Ohm-	193061000000000000.000	170370700000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	2.857	2.884	2.905
constant				
Coefficien	/K	678.564	266.055	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.151	0.178	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.025 0 per unit weight	decreases at rate 0.017 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 45380600000000000	decreases at rate 3070680000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.054 0 per unit weight	increases at rate 0.041 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 825 /K per unit weight	decreases at rate 58.4 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.053 W/(m·K) per unit	increases at rate 0.029 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and dichloro_ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and dichloro_ethylene

Surabhi Priyadarshini Sahoo¹, Mr. Chittaranjan Routray²

¹180705100075@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and dichloro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and dichloro_ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and dichloro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	5226.046	4030.623	4031.244	
modulu	s per				
S	square				
	metre				

Young's modulu	newton s per	3361.917	2356.651	2212.361
s	square metre			
Shear modulu s	newton s per square metre	1206.906	840.129	785.343
Poisson' s ratio	0	0.393	0.403	0.409
Cohesiv e energy (Fedors) at 298K	kiloJoul e per mole	29.784	47.249	93.060

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 2390.8 newtons per square metre per unit weight fraction	increases at rate 1.2 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 2010.532 newtons per square metre per unit weight fraction	decreases at rate 288.58 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 733.553 newtons per square metre per unit weight fraction	decreases at rate 109.574 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0195 0 per unit weight fraction	increases at rate 0.012 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 34.93 kiloJoule per mole per unit weight fraction	increases at rate 91.622 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and dichloro_ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and difluoro_ethylene

Sushree Saraswati Nayak¹, Mr. Chittaranjan Routray²

¹180705100082@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and difluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and difluoro_ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and difluoro_ethylene

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	240.041	336.676	414.398
Density	kg per	1.606	1.357	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	1485.349	571.860	288.203
permeabili	m			
ty				
Nitrogen	Per	456.789	162.880	77.690
permeabili	m			
ty				
Carbon	Per	8299.482	2934.333	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 193.3 oC per unit weight	increases at rate 155.4 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.499 kg per cubic metre	decreases at rate 0.365 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 1827 Perm per unit weight fraction	decreases at rate 567.3 Perm per unit weight fraction	
Nitrogen permeability	decreases at rate 587.8 Perm per unit	decreases at rate 170.4 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 10730.3 Perm per unit	decreases at rate 3086.5 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and difluoro_ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and difluoro_ethylene

Punyatoya Upadhyaya¹, Dr. Ashish Kumar Sahoo²

¹180705100017@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and difluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and difluoro_ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and difluoro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.371	1.491	1.587	
index					
Volume	Ohm-	45262990000000000000000000000000000000000	667346400000000000.000	155017300000000000.000	
resistivity	metre				

-				
Dielectric	0	2.172	2.588	2.905
constant				
Coefficien	/K	761.397	286.835	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.151	0.174	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.241 0 per unit weight	increases at rate 0.191 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 771790520000000000	decreases at rate 102465820000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.831 0 per unit weight	increases at rate 0.634 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 949.1 /K per unit weight	decreases at rate 100 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.045 W/(m·K) per unit	increases at rate 0.038 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and difluoro_ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and difluoro_ethylene

Bibhuti Bhusan Ransingh¹, Dr Tapan Dash²

¹180705120013@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and difluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and difluoro_ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and difluoro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3417.759	3102.468	4031.244	
modulu	s per				
S	square				
	metre				

Young's modulu	newton s per	2.842	1648.363	2212.361
S	square			
	metre			
Shear	newton	0.947	583.926	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.500	0.411	0.409
s ratio				
Cohesiv	kiloJoul	12.566	28.759	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 630.6 newtons per square metre per unit weight fraction	increases at rate 1857.6 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 3291.042 newtons per square metre per unit weight fraction	increases at rate 1127.996 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 1165.957 newtons per square metre per unit weight fraction	increases at rate 402.833 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.1768 0 per unit weight fraction	decreases at rate 0.0058 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 32.385 kiloJoule per mole per unit weight fraction	increases at rate 128.603 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and difluoro_ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and styrene

Dambarudhar Patel¹, Dr. Srikant Sahu²

¹180705100058@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and styrene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and styrene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and styrene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	379.529	395.504	414.398	
Density	kg per	1.074	1.122	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	363.687	323.572	288.203
permeabili	m			
ty				
Nitrogen	Per	99.887	88.039	77.690
permeabili	m			
ty				
Carbon	Per	1792.261	1578.028	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 32 oC per unit weight	increases at rate 37.8 oC per unit weight
temperature	fraction	fraction
Density	increases at rate 0.096 kg per cubic metre	increases at rate 0.105 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	decreases at rate 80.2 Perm per unit	decreases at rate 70.7 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	decreases at rate 23.7 Perm per unit	decreases at rate 20.7 Perm per unit
	weight fraction	weight fraction
Carbon dioxide	decreases at rate 428.5 Perm per unit	decreases at rate 373.9 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and styrene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and styrene

Ch Aditya Narayan Mishra¹, Mr. Chittaranjan Routray²

¹180705100090@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and styrene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and styrene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.604	1.596	1.587	
index					
Volume	Ohm-	734331000000000000.000	357122900000000000.000	155017300000000000.000	
resistivity	metre				

Table 1. Properties of composite of bisphen dimeth carbonate and styrene

Dielectric	0	2.567	2.724	2.905
constant				
Coefficien	/K	256.928	247.315	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.135	0.163	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.016 0 per unit weight	decreases at rate 0.017 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 75441620000000000	decreases at rate 40421120000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.313 0 per unit weight	increases at rate 0.362 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 19.2 /K per unit weight	decreases at rate 21 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.057 W/(m·K) per unit	increases at rate 0.058 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and styrene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and styrene

Rashmiranjan Patra¹, Dr Nibedita Nayak²

¹180705120049@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and styrene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and styrene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties	s of composite	of bisphen	dimeth	carbonate	and styrene
---------------------	----------------	------------	--------	-----------	-------------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3585.198	3794.473	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	3014.022	2520.268	2212.361
illouulu	s per			
s	square			
	metre			
Shear	newton	1108.189	907.028	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.360	0.389	0.409
s ratio				
Cohesiv	kiloJoul	39.197	54.848	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 418.6 newtons per square metre per unit weight fraction	increases at rate 473.5 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 987.508 newtons per square metre per unit weight fraction	decreases at rate 615.814 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 402.323 newtons per square metre per unit weight fraction	decreases at rate 243.37 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0588 0 per unit weight fraction	increases at rate 0.0385 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 31.302 kiloJoule per mole per unit weight fraction	increases at rate 76.424 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and styrene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene

Ardhendushekhar Sahoo¹, Dr. Srikant Sahu²

¹180705100057@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and tetrafluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and tetrafluoro_ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	251.763	345.868	414.398
Density	kg per	2.053	1.494	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	1275.484	497.945	288.203
permeabili	m			
ty				
Nitrogen	Per	387.477	140.258	77.690
permeabili	m			
ty				
Carbon	Per	7030.605	2523.689	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 188.2 oC per unit weight fraction	increases at rate 137.1 oC per unit weight fraction
Density	decreases at rate 1.118 kg per cubic metre per unit weight fraction	decreases at rate 0.639 kg per cubic metre per unit weight fraction
Oxygen permeability	decreases at rate 1555.1 Perm per unit weight fraction	decreases at rate 419.5 Perm per unit weight fraction
Nitrogen permeability	decreases at rate 494.4 Perm per unit weight fraction	decreases at rate 125.1 Perm per unit weight fraction
Carbon dioxide permeability	decreases at rate 9013.8 Perm per unit weight fraction	decreases at rate 2265.2 Perm per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and tetrafluoro_ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene

Rosalin Panda¹, Mrs. Suchismita Acharya²

¹180705100092@cutm.ac.in, ²suchismita.acharya@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and tetrafluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and tetrafluoro_ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.335	1.490	1.587
index				
Volume	Ohm-	6581058000000000000000000	651245200000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	2.091	2.593	2.905
constant				
Coefficien	/K	733.699	279.848	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.146	0.172	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.309 0 per unit weight	increases at rate 0.194 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 1185962560000000000	decreases at rate 99245580000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 1.005 0 per unit weight	increases at rate 0.623 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 907.7 /K per unit weight	decreases at rate 86 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.051 W/(m·K) per unit	increases at rate 0.041 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and tetrafluoro_ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene

Aiswarya Priyadarshini¹, Dr. Dojalisa Sahu²

¹180705100052@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and tetrafluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and tetrafluoro_ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and tetrafluoro_ethylene

Property		Results for		
Name	Unit	0.0 weight fraction of 0.5 weight fraction		1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	5941.105	3268.825	4031.244
modulu	s per			
S	square			
	metre			

Young's modulu	newton s per	2.223	1834.550	2212.361
s	square metre			
Shear modulu s	newton s per square metre	0.741	652.186	785.343
Poisson' s ratio	0	0.500	0.406	0.409
Cohesiv e energy (Fedors) at 298K	kiloJoul e per mole	16.097	37.823	93.060

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 5344.6 newtons per square metre per unit weight fraction	increases at rate 1524.8 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 3664.654 newtons per square metre per unit weight fraction	increases at rate 755.622 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 1302.89 newtons per square metre per unit weight fraction	increases at rate 266.313 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.187 0 per unit weight fraction	increases at rate 0.0041 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 43.451 kiloJoule per mole per unit weight fraction	increases at rate 110.474 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and tetrafluoro_ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_acetate

Prasanta Kumar Mahanta¹, Dr. Dojalisa Sahu²

¹180705100048@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_acetate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_acetate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_acetate

Property		Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	302.653	359.667	414.398
Density	kg per	1.219	1.196	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	90.468	164.071	288.203
permeabili	m			
ty				
Nitrogen	Per	22.219	42.270	77.690
permeabili	m			
ty				
Carbon	Per	393.760	753.092	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 114 oC per unit weight	increases at rate 109.5 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.045 kg per cubic metre	decreases at rate 0.043 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 147.2 Perm per unit	increases at rate 248.3 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 40.1 Perm per unit weight	increases at rate 70.8 Perm per unit weight
	fraction	fraction
Carbon dioxide	increases at rate 718.7 Perm per unit	increases at rate 1276 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and vinyl_acetate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_acetate

Chitrasen Das¹, Mr. Chittaranjan Routray²

¹180705100089@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_acetate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_acetate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Pro	perties of co	nposite of bist	ohen dimeth	carbonate and vir	ivl acetate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.481	1.534	1.587	
index					
Volume	Ohm-	34049510000000000.000	72834060000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	3.234	3.069	2.905
constant				
Coefficien	/K	316.043	269.975	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.175	0.184	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.105 0 per unit weight	increases at rate 0.106 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 7756910000000000	increases at rate 16436648000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.33 0 per unit weight	decreases at rate 0.328 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 92.1 /K per unit weight	decreases at rate 66.3 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.018 W/(m·K) per unit	increases at rate 0.017 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and vinyl_acetate. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_acetate

Aman Bisi¹, Mr. Chittaranjan Routray²

¹180705100037@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_acetate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_acetate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties of	composite of	f bisphen_	dimeth	_carbonate a	and vinyl_	acetate
----------	---------------	--------------	------------	--------	--------------	------------	---------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3101.366	3718.834	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	2163.179	2272.808	2212.361
niodulu	s per			
5	square			
	metre			
Shear	newton	781.636	812.797	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.384	0.398	0.409
s ratio				
Cohesiv	kiloJoul	31.136	46.799	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 1234.9 newtons per square metre per unit weight fraction	increases at rate 624.8 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 219.258 newtons per square metre per unit weight fraction	decreases at rate 120.894 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 62.322 newtons per square metre per unit weight fraction	decreases at rate 54.909 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0288 0 per unit weight fraction	increases at rate 0.0208 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 31.324 kiloJoule per mole per unit weight fraction	increases at rate 92.523 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and vinyl_acetate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_chloride

Chlorophyll¹, Dr. Arun Kumar Pradhan²

¹180705100028@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_chloride. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_chloride on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_chloride

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	291.873	372.354	404.316
Density	kg per	1.383	1.259	1.191

	cubi			
	c			
	metr			
	e			
Oxygen	Per	8.277	81.721	229.047
permeabili	m			
ty				
Nitrogen	Per	1.677	19.907	60.614
permeabili	m			
ty				
Carbon	Per	29.100	352.474	1083.115
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 161 oC per unit weight	increases at rate 63.9 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.249 kg per cubic metre	decreases at rate 0.136 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 146.9 Perm per unit	increases at rate 294.7 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 36.5 Perm per unit weight	increases at rate 81.4 Perm per unit weight
	fraction	fraction
Carbon dioxide	increases at rate 646.7 Perm per unit	increases at rate 1461.3 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and vinyl_chloride. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_chloride

Shibani Priyadarshini¹, Dr Tapan Dash²

¹180705120015@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_chloride. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_chloride on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_chloride

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.556	1.574	1.585
index				
Volume	Ohm-	138712800000000000.000	147895700000000000.000	153576800000000000.000
resistivity	metre			

Dielectric constant	0	2.929	2.915	2.907
Coefficien t of volumetric thermal expansion	/K	652.476	261.493	242.314
Thermal conductivi ty	W/(m· K)	0.157	0.180	0.190

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.037 0 per unit weight	increases at rate 0.02 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 1836580000000000	increases at rate 1136220000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.028 0 per unit weight	decreases at rate 0.016 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 782 /K per unit weight	decreases at rate 38.4 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.048 W/(m·K) per unit	increases at rate 0.02 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and vinyl_chloride. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_chloride

Aninda Sundar Rout¹, Mr. Shraban Kumar Sahoo²

¹180705100002@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_chloride. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_chloride on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	. Properties	of composite	of bisphen_	dimeth	_carbonate and	l vinyl_	chloride
---------	--------------	--------------	-------------	--------	----------------	----------	----------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	4019.120	3827.010	3983.959	
modulu	s per				
S	square				
	metre				

Young's modulu	newton s per	2250.873	2118.197	2190.081
s	square			
	metre			
Shear	newton	800.077	752.333	777.518
modulu	s per			
S	square			
	metre			
Poisson'	0	0.407	0.408	0.408
s ratio				
Cohesiv	kiloJoul	20.231	37.348	71.998
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 384.2 newtons per square metre per unit weight fraction	increases at rate 313.9 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 265.352 newtons per square metre per unit weight fraction	increases at rate 143.768 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 95.488 newtons per square metre per unit weight fraction	increases at rate 50.37 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0022 0 per unit weight fraction	increases at rate 0.0013 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 34.233 kiloJoule per mole per unit weight fraction	increases at rate 69.301 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and vinyl_chloride. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_ether

Manas Ranjan Khatei¹, Mr. Chittaranjan Routray²

¹180705100083@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_ether. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_ether on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_ether

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	263.627	341.573	414.398	
Density	kg per	1.048	1.108	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	925.452	562.600	288.203
permeabili	m			
ty				
Nitrogen	Per	273.987	160.032	77.690
permeabili	m			
ty				
Carbon	Per	4957.183	2882.615	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 155.9 oC per unit weight	increases at rate 145.6 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.119 kg per cubic metre	increases at rate 0.133 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 725.7 Perm per unit	decreases at rate 548.8 Perm per unit	
	weight fraction weight fraction		
Nitrogen permeability	decreases at rate 227.9 Perm per unit	decreases at rate 164.7 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 4149.1 Perm per unit	decreases at rate 2983.1 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and vinyl_ether. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_ether

Swadhin Kumar Meher¹, Dr Santosh Satapathy²

¹180705120007@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_ether. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_ether on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	Properties	of composi	te of bispher	n dimeth	carbonate	and vinvl	ether
1 4010 1.	roperties	or composi	te of ofspher	i_unneun	caroonate	and villyi	cultur

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.470	1.524	1.587	
index					
Volume	Ohm-	309217600000000000.000	221784100000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	2.755	2.827	2.905
constant				
Coefficien	/K	707.642	283.070	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.168	0.181	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.107 0 per unit weight	increases at rate 0.126 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 174867000000000000	decreases at rate 13353360000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.144 0 per unit weight	increases at rate 0.156 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 849.1 /K per unit weight	decreases at rate 92.5 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.025 W/(m·K) per unit	increases at rate 0.023 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and vinyl_ether. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_ether

Sanam Bishoyi¹, Mr. Chittaranjan Routray²

¹180705100084@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_ether. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_ether on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of bisphen_	dimeth	carbonate and	vinyl	ether
----------	------------	--------------	-------------	--------	---------------	-------	-------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	1335.147	3024.643	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1.823	1712.858	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	0.608	609.291	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.500	0.406	0.409
s ratio				
Cohesiv	kiloJoul	17.298	31.385	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 3379 newtons per square metre per unit weight fraction	increases at rate 2013.2 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 3422.071 newtons per square metre per unit weight fraction	increases at rate 999.006 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 1217.366 newtons per square metre per unit weight fraction	increases at rate 352.103 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.1883 0 per unit weight fraction	increases at rate 0.0058 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 28.174 kiloJoule per mole per unit weight fraction	increases at rate 123.35 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and vinyl_ether. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_amide

Suchismita Behera¹, Mr. Shraban Kumar Sahoo²

¹180705100006@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_amide. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_amide on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_amide

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	364.481	392.271	414.398
Density	kg per	1.265	1.218	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	0.143	7.264	288.203
permeabili	m			
ty				
Nitrogen	Per	0.021	1.457	77.690
permeabili	m			
ty				
Carbon	Per	0.350	25.242	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 55.6 oC per unit weight	increases at rate 44.3 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.094 kg per cubic metre	decreases at rate 0.087 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 14.2 Perm per unit weight	increases at rate 561.9 Perm per unit
	fraction	weight fraction
Nitrogen permeability	increases at rate 2.9 Perm per unit weight	increases at rate 152.5 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 49.8 Perm per unit weight	increases at rate 2731.7 Perm per unit
permeability	fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and vinyl_amide. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_amide

Biswaranjan Mallick¹, Dr Padmaja Pattanayak²

¹180705120036@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_amide. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_amide on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of com	posite of bisphen	dimeth carbonate	and vinvl amide
ruble is ripperties of com	posite of ofsprien_	uniterii curoonate	and ingr_annac

Property		Results for		
Name	Unit	0.0 weight fraction of	0.0 weight fraction of 0.5 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.525	1.557	1.587
index				
Volume	Ohm-	196654000000000.000	5238320000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	4.353	3.640	2.905
constant				
Coefficien	/K	266.692	249.202	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.186	0.189	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.063 0 per unit weight	increases at rate 0.06 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 1008333200000000	increases at rate 29955796000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.425 0 per unit weight	decreases at rate 1.471 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 35 /K per unit weight	decreases at rate 24.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.007 W/(m·K) per unit	increases at rate 0.006 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and vinyl_amide. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_amide

Pramitapriyadarshani Panda¹, Dr.Pratap Chhottaray²

¹180705100068@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_amide. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_amide on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. I	Properties o	f composite c	of bisphen_	dimeth_	carbonate	and vinyl_	amide
------------	--------------	---------------	-------------	---------	-----------	------------	-------

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	6800.892	5460.358	4031.244
modulu	s per			
S	square			
	metre			

Young's	newton	4363.514	3227.872	2212.361
modulu	s per			
s	square			
	metre			
Shear	newton	1566.156	1151.598	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.393	0.401	0.409
s ratio				
Cohesiv	kiloJoul	44.297	54.949	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 2681.1 newtons per square metre per unit weight fraction	decreases at rate 2858.2 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 2271.284 newtons per square metre per unit weight fraction	decreases at rate 2031.022 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 829.116 newtons per square metre per unit weight fraction	decreases at rate 732.511 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0168 0 per unit weight fraction	increases at rate 0.0141 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 21.306 kiloJoule per mole per unit weight fraction	increases at rate 76.221 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and vinyl_amide. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and vinyl_fluoride

Nikita Rani Tripathy¹, Dr. Dojalisa Sahu²

¹180705100049@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_fluoride. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_fluoride on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_fluoride

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	273.265	348.814	414.398	
Density	kg per	1.310	1.238	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	799.842	467.126	288.203
permeabili	m			
ty				
Nitrogen	Per	234.040	130.904	77.690
permeabili	m			
ty				
Carbon	Per	4228.931	2354.024	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 151.1 oC per unit weight	increases at rate 131.2 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.143 kg per cubic metre	decreases at rate 0.128 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 665.4 Perm per unit	decreases at rate 357.8 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	decreases at rate 206.3 Perm per unit	decreases at rate 106.4 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 3749.8 Perm per unit	decreases at rate 1925.9 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and vinyl_fluoride. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and vinyl_fluoride

Jyoti Prakash Bharati¹, Dr. Dojalisa Sahu²

¹180705100053@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_fluoride. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_fluoride on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and vinyl_fluoride

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.404	1.497	1.587	
index					
Volume	Ohm-	2752753000000000000000000	624291700000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	2.280	2.602	2.905
constant				
Coefficien	/K	687.800	277.680	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.157	0.176	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.187 0 per unit weight	increases at rate 0.18 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 425692260000000000	decreases at rate 93854880000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.644 0 per unit weight	increases at rate 0.605 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 820.2 /K per unit weight	decreases at rate 81.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.039 W/(m·K) per unit	increases at rate 0.034 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and vinyl_fluoride. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and vinyl_fluoride

Debasis Mahapatra¹, Dr. Dojalisa Sahu²

¹180705100043@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and vinyl_fluoride. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and vinyl_fluoride on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Pr	operties of	composite	of bisphen_	dimeth	carbonate and	vinyl	fluoride
-------------	-------------	-----------	-------------	--------	---------------	-------	----------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3362.694	3200.054	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1604.039	1634.482	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	564.604	577.608	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.420	0.415	0.409
s ratio				
Cohesiv	kiloJoul	11.622	24.108	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 325.3 newtons per square metre per unit weight fraction	increases at rate 1662.4 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 60.886 newtons per square metre per unit weight fraction	increases at rate 1155.758 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 26.006 newtons per square metre per unit weight fraction	increases at rate 415.47 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0113 0 per unit weight fraction	decreases at rate 0.0127 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 24.971 kiloJoule per mole per unit weight fraction	increases at rate 137.904 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and vinyl_fluoride. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethyl_urethane

Ajay Kumar Bhujabal¹, Mr. Chittaranjan Routray²

¹180705100078@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and ethyl_urethane. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethyl_urethane on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethyl_urethane

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	294.359	356.866	414.398	
Density	kg per	1.361	1.261	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1.537	24.328	288.203
permeabili	m			
ty				
Nitrogen	Per	0.272	5.377	77.690
permeabili	m			
ty				
Carbon	Per	4.650	94.175	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 125 oC per unit weight	increases at rate 115.1 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.2 kg per cubic metre	decreases at rate 0.173 kg per cubic metre	
per unit weight fraction per unit weig		per unit weight fraction	
Oxygen permeability	increases at rate 45.6 Perm per unit weight	increases at rate 527.7 Perm per unit	
fraction		weight fraction	
Nitrogen permeability increases at rate 10.2 Perm per unit weigh		increases at rate 144.6 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 179 Perm per unit weight	increases at rate 2593.8 Perm per unit	
permeability	fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and ethyl_urethane. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethyl_urethane

Madhusmita Nayak¹, Mr. Chittaranjan Routray²

¹180705100035@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethyl_urethane. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethyl_urethane on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethyl_urethane

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.514	1.553	1.587
index				
Volume	Ohm-	1050938000000000.000	1486039000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	3.989	3.414	2.905
constant				
Coefficien	/K	648.030	271.923	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.227	0.209	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.078 0 per unit weight	increases at rate 0.069 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 2761890400000000	increases at rate 28031382000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.15 0 per unit weight	decreases at rate 1.018 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 752.2 /K per unit weight	decreases at rate 70.2 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.036 W/(m·K) per unit	decreases at rate 0.033 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and ethyl_urethane. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethyl_urethane

Lokanath Satapathy¹, Susant K. Biswal²

¹190705100005@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethyl_urethane. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethyl_urethane on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethyl_urethane

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	3386.431	4160.685	4031.244
modulu	s per			
S	square			
	metre			

Young's	newton	1367.995	1941.417	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	477.427	682.525	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.433	0.422	0.409
s ratio				
Cohesiv	kiloJoul	35.772	50.386	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction		
	of Monomer 1	of Monomer 1		
Bulk modulus	increases at rate 1548.5 newtons per decreases at rate 258.9 newtons square metre per unit weight fraction square metre per unit weight fraction			
Young's modulus	increases at rate 1146.844 newtons per square metre per unit weight fraction	46.844 newtons per increases at rate 541.888 newtons per tweight fraction square metre per unit weight fraction		
Shear modulus	increases at rate 410.195 newtons per increases at rate 205.635 newtons square metre per unit weight fraction square metre per unit weight fraction			
Poisson's ratio	decreases at rate 0.0209 0 per unit weight fraction	decreases at rate 0.0274 0 per unit weight fraction		
Cohesive energy (Fedors) at 298K	increases at rate 29.227 kiloJoule per mole per unit weight fraction	increases at rate 85.348 kiloJoule per mole per unit weight fraction		

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and ethyl_urethane. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and urethane

Bikash Chandra Dhal¹, Mrs. Suchismita Acharya²

¹180705100093@cutm.ac.in, ²suchismita.acharya@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and urethane. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and urethane on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and urethane

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	299.416	357.417	414.398
Density	kg per	1.171	1.173	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	26.197	87.506	288.203
permeabili	m			
ty				
Nitrogen	Per	5.824	21.434	77.690
permeabili	m			
ty				
Carbon	Per	102.082	379.739	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 116 oC per unit weight	increases at rate 114 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.003 kg per cubic metre	increases at rate 0.003 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 122.6 Perm per unit	increases at rate 401.4 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 31.2 Perm per unit weight	increases at rate 112.5 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 555.3 Perm per unit	increases at rate 2022.7 Perm per unit	
permeability weight fraction		weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and urethane. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and urethane

Sharmistha Mahul¹, Dr Santosh Satapathy²

¹180705120008@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and urethane. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and urethane on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate an	nd urethane
---	-------------

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.506	1.546	1.587
index				
Volume	Ohm-	24988100000000000.000	6003501000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	3.301	3.111	2.905
constant				
Coefficien	/K	319.135	271.537	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.209	0.200	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.08 0 per unit weight	increases at rate 0.083 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 7009382000000000	increases at rate 18996458000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.381 0 per unit weight	decreases at rate 0.412 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 95.2 /K per unit weight	decreases at rate 69.4 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.017 W/(m·K) per unit	decreases at rate 0.016 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and urethane. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and urethane

Suman Kumar Nanda¹, Mr. Chittaranjan Routray²

¹180705100085@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and urethane. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and urethane on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1 Propertie	s of composite	of hisphen	dimeth	carbonate	and urethane
rable 1. ropertie	s of composite	of displicit	unneun	carbonate	and urchance

Property		Results for		
Name	Unit	0.0 weight fraction of 0.5 weight fraction of 1.0 weight		1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	3971.734	3918.367	4031.244
modulu	s per			
S	square			
	metre			

Young's modulu	newton s per	1710.314	1874.103	2212.361
s	square metre			
Shear modulu s	newton s per square metre	598.753	659.763	785.343
Poisson' s ratio	0	0.428	0.420	0.409
Cohesiv e energy (Fedors) at 298K	kiloJoul e per mole	108.366	100.653	93.060

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 106.7 newtons per square metre per unit weight fraction	increases at rate 225.8 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 327.578 newtons per square metre per unit weight fraction	increases at rate 676.516 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 122.02 newtons per square metre per unit weight fraction	increases at rate 251.159 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0159 0 per unit weight fraction	decreases at rate 0.0235 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	decreases at rate 15.427 kiloJoule per mole per unit weight fraction	decreases at rate 15.186 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and urethane. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and 1_butene

Swagatika Swain¹, Dr. Arun Kumar Pradhan²

¹180705100023@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and 1_butene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and 1_butene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and 1_butene

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	212.969	341.392	466.509
Density	kg per	0.855	0.954	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1026.874	1406.619	1595.547
permeabili	m			
ty				
Nitrogen	Per	306.565	430.688	493.508
permeabili	m			
ty				
Carbon	Per	5551.752	7821.462	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 256.8 oC per unit weight	increases at rate 250.2 oC per unit weight
temperature	fraction	fraction
Density	increases at rate 0.198 kg per cubic metre	increases at rate 0.251 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 759.5 Perm per unit	increases at rate 377.9 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 248.2 Perm per unit	increases at rate 125.6 Perm per unit
	weight fraction	weight fraction
Carbon dioxide	increases at rate 4539.4 Perm per unit	increases at rate 2301.8 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and 1_butene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and 1_butene

Premamanjari Pradhan¹, Dr.Pratap Chhottaray²

¹180705100067@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and 1_butene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and 1_butene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.467	1.512	1.572
index				
Volume	Ohm-	270639000000000000.000	1081328000000000000.000	324667800000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth bisphen carbonate and 1 butene

Dielectric constant	0	2.284	2.483	2.744
Coefficien t of volumetri c thermal expansion	/K	834.125	283.207	212.051
Thermal conductivi ty	W/(m∙ K)	0.134	0.155	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.091 0 per unit weight	increases at rate 0.119 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 325012400000000000	decreases at rate 151332040000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.398 0 per unit weight	increases at rate 0.523 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1101.8 /K per unit weight	decreases at rate 142.3 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.041 W/(m·K) per unit	increases at rate 0.039 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and 1_butene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and 1_butene

Debasmita Sethi¹, packaging material with cellulose and biodegradable polythene²

¹180705100077@cutm.ac.in, ²0

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and 1_butene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and 1_butene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	. Properties	of composite o	f tetmeth	_bisphen_	carbonate and	1_	butene
---------	--------------	----------------	-----------	-----------	---------------	----	--------

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	2297.805	2716.670	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	1.083	1891.989	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.361	683.558	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.384	0.376
's ratio				
Cohesi	kiloJoul	19.092	32.901	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 837.7 newtons per square metre per unit weight fraction	increases at rate 2190.9 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 3781.812 newtons per square metre per unit weight fraction	increases at rate 1895.466 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 1366.394 newtons per square metre per unit weight fraction	increases at rate 696.866 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.232 0 per unit weight fraction	decreases at rate 0.0162 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 27.618 kiloJoule per mole per unit weight fraction	increases at rate 152.787 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and 1_butene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and ethylene

Prateet Banajyotshna Sahoo¹, Mrs. Suchismita Acharya²

¹180705100096@cutm.ac.in, ²suchismita.acharya@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene

Property		Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	191.974	331.903	466.509
Density	kg per	0.872	0.965	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	745.304	1169.480	1595.547
permeabili	m			
ty				
Nitrogen	Per	216.848	352.806	493.508
permeabili	m			
ty				
Carbon	Per	3915.815	6396.562	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 279.9 oC per unit weight	increases at rate 269.2 oC per unit weight
temperature	fraction	fraction
Density	increases at rate 0.185 kg per cubic metre	increases at rate 0.229 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 848.4 Perm per unit	increases at rate 852.1 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 271.9 Perm per unit	increases at rate 281.4 Perm per unit
	weight fraction	weight fraction
Carbon dioxide	increases at rate 4961.5 Perm per unit	increases at rate 5151.6 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and ethylene

Saismita Sahoo¹, Mr. Chittaranjan Routray²

¹180705100072@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.465	1.512	1.572
index				
Volume	Ohm-	2215376000000000000000000000000000000000000	958874000000000000.000	324667800000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth bisphen carbonate and ethylene

Dielectric	0	2.327	2.509	2.744
constant				
Coefficien	/K	900.860	290.603	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.172	0.173	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.093 0 per unit weight	increases at rate 0.12 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 251300400000000000	decreases at rate 126841240000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.364 0 per unit weight	increases at rate 0.47 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1220.5 /K per unit weight	decreases at rate 157.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.003 W/(m·K) per unit	increases at rate 0.002 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and ethylene

Sachin Mishra¹, Dr Tapan Dash²

¹180705120018@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	2466.650	2734.074	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	2.566	1445.472	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.855	511.894	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.412	0.376
's ratio				
Cohesi	kiloJoul	9.883	18.123	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 534.8 newtons per square metre per unit weight fraction	increases at rate 2156 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 2885.811 newtons per square metre per unit weight fraction	increases at rate 2788.5 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 1022.077 newtons per square metre per unit weight fraction	increases at rate 1040.194 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.1759 0 per unit weight fraction	decreases at rate 0.0721 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 16.481 kiloJoule per mole per unit weight fraction	increases at rate 182.343 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and isobutene

Chinmay Behera¹, Dojalisa Sahu²

¹190705100014@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and isobutene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and isobutene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and isobutene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	183.823	327.119	466.509	
Density	kg per	0.856	0.955	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	2438.329	2282.123	1595.547
permeabili	m			
ty				
Nitrogen	Per	780.327	726.462	493.508
permeabili	m			
ty				
Carbon	Per	14240.660	13249.830	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 286.6 oC per unit weight	increases at rate 278.8 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.198 kg per cubic metre	increases at rate 0.25 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 312.4 Perm per unit	decreases at rate 1373.2 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	decreases at rate 107.7 Perm per unit	decreases at rate 465.9 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 1981.7 Perm per unit	decreases at rate 8554.9 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and isobutene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and isobutene

Biswaranjan Dalai¹, Dr. Srikant Kumar Sahu²

¹180705100040@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and isobutene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and isobutene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.479	1.519	1.572
index				
Volume	Ohm-	36081020000000000000000000000000000000000	12362460000000000000000000000000000000000	324667800000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth bisphen carbonate and isobutene

Dielectric	0	2.221	2.454	2.744
constant				
Coefficien	/K	929.737	294.480	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.131	0.153	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.08 0 per unit weight	increases at rate 0.105 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 474371200000000000	decreases at rate 182315640000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.465 0 per unit weight	increases at rate 0.581 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1270.5 /K per unit weight	decreases at rate 164.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.044 W/(m·K) per unit	increases at rate 0.043 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and isobutene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and isobutene

Ketaki Mirdha¹, Mr. Chittaranjan Routray²

¹180705100032@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and isobutene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and isobutene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

	Table 1.	Properties	of composite o	f tetmeth	bisphen	carbonate an	nd isobutene
--	----------	------------	----------------	-----------	---------	--------------	--------------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	1332.498	2478.280	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	1.019	1701.372	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.340	613.956	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.386	0.376
's ratio				
Cohesi	kiloJoul	16.870	31.020	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus increases at rate 2291.6 newtons per square metre per unit weight fraction		increases at rate 2667.6 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 3400.706 newtons per square metre per unit weight fraction	increases at rate 2276.7 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 1227.233 newtons per square metre per unit weight fraction	increases at rate 836.069 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.2286 0 per unit weight fraction	decreases at rate 0.0195 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 28.298 kiloJoule per mole per unit weight fraction	increases at rate 156.549 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and isobutene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and propylene

Pratikhya Sahoo¹, Dr Tapan Dash²

¹180705120014@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and propylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and propylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and propylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	229.892	349.940	466.509	
Density	kg per	0.858	0.956	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1316.654	1615.423	1595.547
permeabili	m			
ty				
Nitrogen	Per	401.007	500.153	493.508
permeabili	m			
ty				
Carbon	Per	7278.144	9094.171	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 240.1 oC per unit weight	increases at rate 233.1 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.196 kg per cubic metre	increases at rate 0.247 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 597.5 Perm per unit	decreases at rate 39.8 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 198.3 Perm per unit	decreases at rate 13.3 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 3632.1 Perm per unit	decreases at rate 243.6 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and propylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and propylene

Sudhansubala Nayak¹, Mr. Shraban Kumar Sahoo²

¹180705100004@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and propylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and propylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.471	1.515	1.572
index				
Volume	Ohm-	29558560000000000000000000	1126650000000000000000000000000000000000	324667800000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth bisphen carbonate and propylene

Dielectric constant	0	2.265	2.474	2.744
Coefficien t of volumetri c thermal expansion	/K	787.126	276.860	212.051
Thermal conductivi ty	W/(m· K)	0.143	0.159	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.087 0 per unit weight	increases at rate 0.114 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 365841200000000000	decreases at rate 160396440000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.419 0 per unit weight	increases at rate 0.54 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1020.5 /K per unit weight	decreases at rate 129.6 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.032 W/(m·K) per unit	increases at rate 0.031 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and propylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and propylene

Ashmita Mishra¹, Dojalisa Sahu²

¹190705100009@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and propylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and propylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	1976.690	2721.361	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	1.770	1698.328	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.590	608.289	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.396	0.376
's ratio				
Cohesi	kiloJoul	13.775	25.179	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus increases at rate 1489.3 newtons per square metre per unit weight fraction		increases at rate 2181.5 newtons per square metre per unit weight fraction	
Young's modulus increases at rate 3393.117 newtons per square metre per unit weight fraction		increases at rate 2282.788 newtons per square metre per unit weight fraction	
Shear modulus increases at rate 1215.398 newtons p square metre per unit weight fraction		increases at rate 847.404 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.2077 0 per unit weight fraction	decreases at rate 0.0403 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 22.808 kiloJoule per mole per unit weight fraction	increases at rate 168.232 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and propylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and acrylonitrile

Baby Subhasree Senapati¹, Dr Santosh Satapathy²

¹180705120012@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and acrylonitrile. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and acrylonitrile on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and acrylonitrile

Property		Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	361.527	413.320	466.509
Density	kg per	1.177	1.126	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	0.082	12.859	1595.547
permeabili	m			
ty				
Nitrogen	Per	0.012	2.700	493.508
permeabili	m			
ty				
Carbon	Per	0.192	47.025	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 103.6 oC per unit weight	increases at rate 106.4 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.101 kg per cubic metre	decreases at rate 0.093 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 25.6 Perm per unit weight	increases at rate 3165.4 Perm per unit
	fraction	weight fraction
Nitrogen permeability	increases at rate 5.4 Perm per unit weight	increases at rate 981.6 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 93.7 Perm per unit weight	increases at rate 17850.7 Perm per unit
permeability	fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and acrylonitrile. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and acrylonitrile

Soumya Ranjan Biswal¹, Mr. Chittaranjan Routray²

¹180705100081@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and acrylonitrile. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and acrylonitrile on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.542	1.558	1.572
index				
Volume	Ohm-	104106900000000.000	1633788000000000.000	32466780000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth_bisphen_carbonate and acrylonitrile

Dielectric constant	0	3.991	3.393	2.744
Coefficien t of volumetri c thermal expansion	/K	268.697	237.409	212.051
Thermal conductivi ty	W/(m· K)	0.178	0.176	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.03 0 per unit weight	increases at rate 0.028 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 3059362200000000	increases at rate 61665984000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.196 0 per unit weight	decreases at rate 1.298 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 62.6 /K per unit weight	decreases at rate 50.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.004 W/(m·K) per unit	decreases at rate 0.004 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and acrylonitrile. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and acrylonitrile

Sushanta Kumar Mohanta¹, Dr Nibedita Nayak²

¹180705120048@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and acrylonitrile. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and acrylonitrile on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and acrylonitrile

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	6497.867	5251.292	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	3736.424	3371.657	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1330.481	1210.223	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.404	0.393	0.376
's ratio				
Cohesi	kiloJoul	34.157	45.127	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property Trend for 0.0 to 0.5 weight fra		Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 2493.2 newtons per square metre per unit weight fraction	decreases at rate 2878.4 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 729.534 newtons per square metre per unit weight fraction	decreases at rate 1063.87 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 240.516 newtons per square metre per unit weight fraction	decreases at rate 356.464 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0223 0 per unit weight fraction	decreases at rate 0.0343 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 21.94 kiloJoule per mole per unit weight fraction	increases at rate 128.335 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and acrylonitrile. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth bisphen carbonate and dichloro ethylene

Suman Kumar Adak¹, Dr. Ashish Kumar Sahoo²

¹180705100012@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and dichloro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and dichloro_ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and dichloro_ethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	277.943	398.243	466.509	
Density	kg per	1.689	1.317	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	0.982	101.111	1595.547
permeabili	m			
ty				
Nitrogen	Per	0.168	25.056	493.508
permeabili	m			
ty				
Carbon	Per	2.853	444.475	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 240.6 oC per unit weight	increases at rate 136.5 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.744 kg per cubic metre	decreases at rate 0.475 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 200.3 Perm per unit	increases at rate 2988.9 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 49.8 Perm per unit weight	increases at rate 936.9 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 883.2 Perm per unit	increases at rate 17055.8 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and dichloro_ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and dichloro_ethylene

Nishant Kumar Seth¹, Mr. Chittaranjan Routray²

¹180705100074@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and dichloro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and dichloro_ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and dichloro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.608	1.586	1.572	
index					
Volume	Ohm-	19306100000000000.000	261442800000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric constant	0	2.857	2.791	2.744
Coefficien t of volumetri c thermal expansion	/K	678.564	245.739	212.051
Thermal conductivi ty	W/(m∙ K)	0.151	0.166	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.045 0 per unit weight	decreases at rate 0.028 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 13676360000000000	increases at rate 12645000000000000000000000000000000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.132 0 per unit weight	decreases at rate 0.094 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 865.6 /K per unit weight	decreases at rate 67.4 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.03 W/(m·K) per unit	increases at rate 0.017 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and dichloro_ethylene. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and dichloro_ethylene

Debiprasad Nayak¹, Dr. Pratap Chhottaray²

¹180705100070@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and dichloro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and dichloro_ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and dichloro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	5226.046	3974.772	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	3361.917	2772.901	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1206.906	1001.967	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.393	0.384	0.376
's ratio				
Cohesi	kiloJoul	29.784	48.707	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property Trend for 0.0 to 0.5 weight fraction		Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 2502.5 newtons per square metre per unit weight fraction	decreases at rate 325.4 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 1178.032 newtons per square metre per unit weight fraction	increases at rate 133.642 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 409.878 newtons per square metre per unit weight fraction	increases at rate 60.048 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0181 0 per unit weight fraction	decreases at rate 0.0158 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 37.846 kiloJoule per mole per unit weight fraction	increases at rate 121.175 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and dichloro_ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and difluoro_ethylene

Bhabatosh Swain¹, Dr Tapan Dash²

¹180705120024@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and difluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and difluoro_ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and difluoro_ethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	240.041	365.473	466.509	
Density	kg per	1.606	1.291	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1485.349	1470.861	1595.547
permeabili	m			
ty				
Nitrogen	Per	456.789	451.977	493.508
permeabili	m			
ty				
Carbon	Per	8299.482	8211.345	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 250.9 oC per unit weight	increases at rate 202.1 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.629 kg per cubic metre	decreases at rate 0.423 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	decreases at rate 29 Perm per unit weight	increases at rate 249.4 Perm per unit
	fraction	weight fraction
Nitrogen permeability	decreases at rate 9.6 Perm per unit weight	increases at rate 83.1 Perm per unit weight
	fraction	fraction
Carbon dioxide	decreases at rate 176.3 Perm per unit	increases at rate 1522 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and difluoro_ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and difluoro_ethylene

Dibyashree Rout¹, Dr. Srikant Sahu²

¹180705100056@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and difluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and difluoro_ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and difluoro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.371	1.487	1.572	
index					
Volume	Ohm-	45262990000000000000000000000000000000000	97923110000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric	0	2.172	2.505	2.744
constant				
Coefficien	/K	761.397	266.026	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.151	0.164	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.233 0 per unit weight	increases at rate 0.169 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 709413580000000000	decreases at rate 130912660000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.665 0 per unit weight	increases at rate 0.479 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 990.7 /K per unit weight	decreases at rate 107.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.025 W/(m·K) per unit	increases at rate 0.021 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and difluoro_ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and difluoro_ethylene

Simreen Sultana¹, Mr. Shraban Kumar Sahoo²

¹180705100007@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and difluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and difluoro_ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and difluoro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3417.759	3059.917	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	2.842	1889.146	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.947	676.094	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.397	0.376
's ratio				
Cohesi	kiloJoul	12.566	29.109	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 715.7 newtons per square metre per unit weight fraction	increases at rate 1504.4 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 3772.608 newtons per square metre per unit weight fraction	increases at rate 1901.152 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 1350.293 newtons per square metre per unit weight fraction	increases at rate 711.794 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.2055 0 per unit weight fraction	decreases at rate 0.0425 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 33.085 kiloJoule per mole per unit weight fraction	increases at rate 160.372 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and difluoro_ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and meth_styrene

Lipsarani Satapathy¹, Mr. Shraban Kumar Sahoo²

¹180705100010@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and meth_styrene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and meth_styrene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and meth_styrene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	407.893	435.016	466.509	
Density	kg per	1.036	1.057	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	617.633	980.372	1595.547
permeabili	m			
ty				
Nitrogen	Per	177.009	291.594	493.508
permeabili	m			
ty				
Carbon	Per	3191.058	5278.457	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 54.2 oC per unit weight	increases at rate 63 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.043 kg per cubic metre	increases at rate 0.044 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 725.5 Perm per unit	increases at rate 1230.4 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 229.2 Perm per unit	increases at rate 403.8 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 4174.8 Perm per unit	increases at rate 7387.8 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and meth_styrene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and meth_styrene

Somanweta Singh¹, Mr. Chittaranjan Routray²

¹180705100038@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and meth_styrene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and meth_styrene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.591	1.582	1.572	
index					
Volume	Ohm-	97546030000000000.000	578870000000000000000000000000000000000	324667800000000000.000	
resistivity	metre				

Table 1. Properties of composite of tetmeth_bisphen_carbonate and meth_styrene

Dielectric	0	2.505	2.619	2.744
constant				
Coefficien	/K	240.342	226.367	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.130	0.152	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.019 0 per unit weight	decreases at rate 0.02 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 79318060000000000	decreases at rate 50840440000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.227 0 per unit weight	increases at rate 0.251 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 27.9 /K per unit weight	decreases at rate 28.6 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.043 W/(m·K) per unit	increases at rate 0.044 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and meth_styrene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and meth_styrene

Pritee Debadarshini¹, Dojalisa Sahu²

¹190705100016@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and meth_styrene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and meth_styrene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and meth_styrene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3471.108	3636.804	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	3138.433	2975.224	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1162.980	1090.903	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.349	0.364	0.376
's ratio				
Cohesi	kiloJoul	42.616	61.003	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 331.4 newtons per square metre per unit weight fraction	increases at rate 350.6 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 326.418 newtons per square metre per unit weight fraction	decreases at rate 271.004 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 144.154 newtons per square metre per unit weight fraction	decreases at rate 117.824 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0287 0 per unit weight fraction	increases at rate 0.0244 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 36.773 kiloJoule per mole per unit weight fraction	increases at rate 96.583 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and meth_styrene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and styrene

Swarnalata Pradhan¹, Dr. Ashish Kumar Sahoo²

¹180705100014@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and styrene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and styrene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and styrene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	379.529	420.782	466.509	
Density	kg per	1.074	1.077	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	363.687	749.378	1595.547
permeabili	m			
ty				
Nitrogen	Per	99.887	218.129	493.508
permeabili	m			
ty				
Carbon	Per	1792.261	3939.137	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 82.5 oC per unit weight	increases at rate 91.5 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.006 kg per cubic metre per unit weight fraction	increases at rate 0.006 kg per cubic metre per unit weight fraction	
Oxygen permeability	increases at rate 771.4 Perm per unit weight fraction	increases at rate 1692.3 Perm per unit weight fraction	
Nitrogen permeability	increases at rate 236.5 Perm per unit	increases at rate 550.8 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 4293.8 Perm per unit	increases at rate 10066.4 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and styrene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and styrene

Padmaja Sahoo¹, Dr Tapan Dash²

¹190705120004@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and styrene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and styrene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.604	1.588	1.572	
index					
Volume	Ohm-	734331000000000000.000	49737680000000000.000	324667800000000000.000	
resistivity	metre				

Table 1. Properties of composite of tetmeth bisphen carbonate and styrene

Dielectric constant	0	2.567	2.652	2.744
Coefficien t of volumetri c thermal expansion	/K	256.928	233.492	212.051
Thermal conductivi ty	W/(m· K)	0.135	0.154	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.032 0 per unit weight	decreases at rate 0.032 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 47390840000000000	decreases at rate 34541800000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.169 0 per unit weight	increases at rate 0.185 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 46.9 /K per unit weight	decreases at rate 42.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.039 W/(m·K) per unit	increases at rate 0.04 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and styrene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and styrene

Ratikanta Behera¹, Dr Tapan Dash²

¹190705120011@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and styrene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and styrene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Proper	rties of com	posite of tetr	neth_bisphei	n_carbonate and	1 styrene
-----------------	--------------	----------------	--------------	-----------------	-----------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3585.198	3712.690	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	3014.022	2936.816	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1108.189	1073.270	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.360	0.368	0.376
's ratio				
Cohesi	kiloJoul	39.197	56.809	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 255 newtons per square metre per unit weight fraction	 increases at rate 198.8 newtons per square metre per unit weight fraction 	
Young's modulus decreases at rate 154.412 news square metre per unit weight fract		decreases at rate 194.188 newtons per square metre per unit weight fraction	
Shear modulus	decreases at rate 69.838 newtons per square metre per unit weight fraction	decreases at rate 82.558 newtons per square metre per unit weight fraction	
Poisson's ratio	increases at rate 0.0166 0 per unit weight fraction	increases at rate 0.0154 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 35.223 kiloJoule per mole per unit weight fraction	increases at rate 104.971 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and styrene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth bisphen carbonate and tetrafluoro ethylene

Sheetal Pradhan¹, Dr. Ashish Kumar Sahoo²

¹180705100018@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and tetrafluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and tetrafluoro_ethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	251.763	375.211	466.509	
Density	kg per	2.053	1.415	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1275.484	1381.171	1595.547
permeabili	m			
ty				
Nitrogen	Per	387.477	422.276	493.508
permeabili	m			
ty				
Carbon	Per	7030.605	7667.452	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 246.9 oC per unit weight	increases at rate 182.6 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 1.276 kg per cubic metre	decreases at rate 0.671 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 211.4 Perm per unit weight fraction	increases at rate 428.8 Perm per unit weight fraction	
Nitrogen permeability	increases at rate 69.6 Perm per unit weight	increases at rate 142.5 Perm per unit	
retrogen permeability	fraction	weight fraction	
Carbon dioxide	increases at rate 1273.7 Perm per unit	increases at rate 2609.8 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and tetrafluoro_ethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene

Suprabha Palatasingh¹, Mr. Chittaranjan Routray²

¹180705100033@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and tetrafluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and tetrafluoro_ethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.335	1.486	1.572	
index					
Volume	Ohm-	65810580000000000000000000	987949500000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric	0	2.091	2.503	2.744
constant				
Coefficien	/K	733.699	259.656	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.146	0.162	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.301 0 per unit weight	increases at rate 0.172 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 1118621700000000000	decreases at rate 132656340000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.824 0 per unit weight	increases at rate 0.483 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 948.1 /K per unit weight	decreases at rate 95.2 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.031 W/(m·K) per unit	increases at rate 0.025 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and tetrafluoro_ethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene

Subhadra Mandal¹, Dr Nibedita Nayak²

¹180705120053@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and tetrafluoro_ethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and tetrafluoro_ethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and tetrafluoro_ethylene

Prop	oerty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	5941.105	3195.183	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	2.223	2147.526	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.741	773.615	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.388	0.376
's ratio				
Cohesi	kiloJoul	16.097	38.809	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 5491.8 newtons per square metre per unit weight fraction	increases at rate 1233.8 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 4290.606 newtons per square metre per unit weight fraction	increases at rate 1384.392 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 1545.748 newtons per square metre per unit weight fraction	increases at rate 516.752 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.2239 0 per unit weight fraction	decreases at rate 0.0243 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 45.424 kiloJoule per mole per unit weight fraction	increases at rate 140.97 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and tetrafluoro_ethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and vinyl_acetate

Sudeshna Mishra¹, Dr. Dojalisa Sahu²

¹180705100044@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and vinyl_acetate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and vinyl_acetate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and vinyl_acetate

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	302.653	386.461	466.509
Density	kg per	1.219	1.145	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	90.468	403.423	1595.547
permeabili	m			
ty				
Nitrogen	Per	22.219	111.728	493.508
permeabili	m			
ty				
Carbon	Per	393.760	2006.568	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 167.6 oC per unit weight	increases at rate 160.1 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.147 kg per cubic metre	decreases at rate 0.131 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 625.9 Perm per unit	increases at rate 2384.2 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 179 Perm per unit weight	increases at rate 763.6 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 3225.6 Perm per unit	increases at rate 13931.6 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and vinyl_acetate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and vinyl_acetate

Rudra Prakash¹, Dr Tapan Dash²

¹190705120009@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and vinyl_acetate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and vinyl_acetate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prope	erty		Results for	
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.481	1.529	1.572
index				
Volume	Ohm-	3404951000000000.000	108908800000000000.000	324667800000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth bisphen carbonate and vinyl acetate

Dielectric	0	3.234	2.981	2.744
constant				
Coefficien	/K	316.043	252.667	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.175	0.175	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.094 0 per unit weight	increases at rate 0.086 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 14971858000000000	increases at rate 43151800000000000000000000000000000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.505 0 per unit weight	decreases at rate 0.474 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 126.8 /K per unit weight	decreases at rate 81.2 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.001 W/(m·K) per unit	decreases at rate 0.001 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and vinyl_acetate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and vinyl_acetate

Sandhya Subhadarshini Sahoo¹, Dojalisa Sahu²

¹190705100011@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and vinyl_acetate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and vinyl_acetate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Prop	perties of com	posite of tetme	eth_bisphen_	_carbonate and	vinyl_acetate
---------------	----------------	-----------------	--------------	----------------	---------------

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.0 weight fraction of 0.5 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	3101.366	3668.181	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	2163.179	2644.366	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	781.636	958.207	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.384	0.380	0.376
's ratio				
Cohesi	kiloJoul	31.136	48.107	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 1133.6 newtons per square metre per unit weight fraction	increases at rate 287.8 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 962.374 newtons per square metre per unit weight fraction	increases at rate 390.712 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 353.142 newtons per square metre per unit weight fraction	increases at rate 147.568 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0078 0 per unit weight fraction	decreases at rate 0.008 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 33.942 kiloJoule per mole per unit weight fraction	increases at rate 122.374 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and vinyl_acetate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and vinyl_chloride

Pratyasha Mohanty¹, Dr Padmaja Pattanayak²

¹180705120030@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and vinyl_chloride. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and vinyl_chloride on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and vinyl_chloride

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	291.873	397.535	466.509	
Density	kg per	1.383	1.213	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	8.277	183.446	1595.547
permeabili	m			
ty				
Nitrogen	Per	1.677	47.688	493.508
permeabili	m			
ty				
Carbon	Per	29.100	850.455	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 211.3 oC per unit weight	increases at rate 137.9 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.341 kg per cubic metre	decreases at rate 0.266 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 350.3 Perm per unit	increases at rate 2824.2 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 92 Perm per unit weight	increases at rate 891.6 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 1642.7 Perm per unit	increases at rate 16243.8 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and vinyl_chloride. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and vinyl_chloride

Manas Kumar Patel¹, Dr. Arun Kumar Pradhan²

¹180705100027@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and vinyl_chloride. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and vinyl_chloride on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of tetmeth	bisphen	carbonate and	l vinvl	chloride
1 4010 1.	roperties	or composite	or termetin_	_onspinein_	_curoonate une	· • myı_	cilloride

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.556	1.565	1.572	
index					
Volume	Ohm-	138712800000000000.000	218728000000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric constant	0	2.929	2.830	2.744
Coefficien t of volumetri c thermal expansion	/K	652.476	246.144	212.051
Thermal conductivi ty	W/(m∙ K)	0.157	0.167	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.018 0 per unit weight	increases at rate 0.014 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 16003040000000000	increases at rate 21187960000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.198 0 per unit weight	decreases at rate 0.172 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 812.7 /K per unit weight	decreases at rate 68.2 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.022 W/(m·K) per unit	increases at rate 0.014 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and vinyl_chloride. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and vinyl_chloride

Itu Ipsita Tripathy¹, Dr. Srikant Kumar Sahu²

¹180705100039@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and vinyl_chloride. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and vinyl_chloride on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and vinyl_chloride

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	4019.120	3746.577	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	2250.873	2403.413	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	800.077	862.623	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.407	0.393	0.376
's ratio				
Cohesi	kiloJoul	20.231	35.159	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 545.1 newtons per square metre per unit weight fraction	increases at rate 131 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 305.08 newtons per square metre per unit weight fraction	increases at rate 872.618 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 125.092 newtons per square metre per unit weight fraction	increases at rate 338.736 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0272 0 per unit weight	decreases at rate 0.0345 0 per unit weight
	fraction	fraction
Cohesive energy (Fedors) at 298K	increases at rate 29.855 kiloJoule per mole per unit weight fraction	increases at rate 148.271 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and vinyl_chloride. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and butylene_isophthalate

Suman Patra¹, Susant K. Biswal²

¹190705100003@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and butylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and butylene_isophthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and butylene_isophthalate

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	308.194	362.127	414.398	
Density	kg per	1.237	1.205	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	14.676	66.646	288.203
permeabili	m			
ty				
Nitrogen	Per	3.114	15.971	77.690
permeabili	m			
ty				
Carbon	Per	54.304	282.271	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 107.9 oC per unit weight	increases at rate 104.5 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.064 kg per cubic metre	decreases at rate 0.061 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 103.9 Perm per unit	increases at rate 443.1 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 25.7 Perm per unit weight	increases at rate 123.4 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 455.9 Perm per unit	increases at rate 2217.6 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and butylene_isophthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and butylene_isophthalate

Sai Sekhar Das¹, Dr Tapan Dash²

¹190705120007@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and butylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and butylene_isophthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and butylene_isophthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.544	1.566	1.587	
index					
Volume	Ohm-	5913188000000000.000	96048610000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	3 114	3 009	2 905
Dielectric	U	5.114	5.007	2.905
constant				
Coefficien	/K	310.887	268.288	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.205	0.199	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.043 0 per unit weight	increases at rate 0.042 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 7383346000000000	increases at rate 11793738000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.211 0 per unit weight	decreases at rate 0.208 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 85.2 /K per unit weight	decreases at rate 62.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.013 W/(m·K) per unit	decreases at rate 0.012 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and butylene_isophthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and butylene_isophthalate

Sushreesuchismita Pradhan¹, Mr. Chittaranjan Routray²

¹180705100030@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and butylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and butylene_isophthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and butylene_isophthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3450.766	3865.436	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1719.804	2018.442	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	606.874	714.255	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.417	0.413	0.409
s ratio				
Cohesiv	kiloJoul	83.969	88.188	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 829.3 newtons per square metre per unit weight fraction	increases at rate 331.6 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 597.276 newtons per square metre per unit weight fraction	increases at rate 387.838 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 214.762 newtons per square metre per unit weight fraction	increases at rate 142.175 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0079 0 per unit weight	decreases at rate 0.0089 0 per unit weight
Cohesive energy	increases at rate 8.438 kiloJoule per mole	increases at rate 9./43 kiloJoule per mole
(Fedors) at 298K	per unit weight fraction	per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and butylene_isophthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and butylene_terepthalate

Kanakalata Meher¹, Dr. Arun Kumar Pradhan²

¹180705100024@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and butylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and butylene_terepthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and butylene_terepthalate

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	345.485	380.463	414.398	
Density	kg per	1.237	1.205	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	14.676	66.646	288.203
permeabili	m			
ty				
Nitrogen	Per	3.114	15.971	77.690
permeabili	m			
ty				
Carbon	Per	54.304	282.271	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 70 oC per unit weight	increases at rate 67.9 oC per unit weight
temperature	Iraction	Iraction
Density	decreases at rate 0.064 kg per cubic metre per unit weight fraction	decreases at rate 0.061 kg per cubic metre per unit weight fraction
Oxygen permeability	increases at rate 103.9 Perm per unit weight fraction	increases at rate 443.1 Perm per unit weight fraction
Nitrogen permeability	increases at rate 25.7 Perm per unit weight	increases at rate 123.4 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 455.9 Perm per unit	increases at rate 2217.6 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and butylene_terepthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and butylene_terepthalate

Kiran Manisha Ray¹, Dr Santosh Satapathy²

¹180705120010@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and butylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and butylene_terepthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and butylene_terepthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.544	1.566	1.587	
index					
Volume	Ohm-	59131880000000000.000	96048610000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	3.114	3.009	2.905
constant				
Coefficien	/K	280.133	256.345	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.205	0.199	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.043 0 per unit weight	increases at rate 0.042 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 7383346000000000	increases at rate 11793738000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.211 0 per unit weight	decreases at rate 0.208 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 47.6 /K per unit weight	decreases at rate 39 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.013 W/(m·K) per unit	decreases at rate 0.012 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and butylene_terepthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and butylene_terepthalate

B.Sourav Kumar¹, Dr Tapan Dash²

¹190705120005@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and butylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and butylene_terepthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and butylene_terepthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3912.751	3999.145	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1869.451	2040.907	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	658.086	721.197	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.420	0.415	0.409
s ratio				
Cohesiv	kiloJoul	83.969	88.188	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 172.8 newtons per square metre per unit weight fraction	increases at rate 64.2 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 342.912 newtons per square metre per unit weight fraction	increases at rate 342.908 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 126.222 newtons per square metre per unit weight fraction	increases at rate 128.291 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0109 0 per unit weight fraction	decreases at rate 0.0128 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 8.438 kiloJoule per mole per unit weight fraction	increases at rate 9.743 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and butylene_terepthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and butylene_isophthalate

Sabyasachi Panigrahi¹, Dr Santosh Satapathy²

¹180705120003@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and butylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and butylene_isophthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and butylene_isophthalate

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	308.194	388.383	466.509	
Density	kg per	1.237	1.153	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	14.676	164.832	1595.547
permeabili	m			
ty				
Nitrogen	Per	3.114	42.482	493.508
permeabili	m			
ty				
Carbon	Per	54.304	756.895	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 160.4 oC per unit weight	increases at rate 156.3 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.168 kg per cubic metre	decreases at rate 0.146 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 300.3 Perm per unit	increases at rate 2861.4 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 78.7 Perm per unit weight	increases at rate 902.1 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 1405.2 Perm per unit	increases at rate 16430.9 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and butylene_isophthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and butylene_isophthalate

Madhusweta Behera¹, Dr. Arun Kumar Pradhan²

¹180705100022@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and butylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and butylene_isophthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and butylene_isophthalate

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.544	1.559	1.572
index				
Volume	Ohm-	5913188000000000.000	142694700000000000.000	324667800000000000.000
resistivity	metre			

Dielectric	0	3.114	2.923	2.744
constant				
Coefficien	/K	310.887	251.510	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.205	0.189	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.029 0 per unit weight	increases at rate 0.026 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 16712564000000000	increases at rate 36394620000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.383 0 per unit weight	decreases at rate 0.357 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 118.8 /K per unit weight	decreases at rate 78.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.031 W/(m·K) per unit	decreases at rate 0.03 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and butylene_isophthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and butylene_isophthalate

Ipsita Das¹, Susant K. Biswal²

¹190705100007@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and butylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and butylene_isophthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and butylene_isophthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3450.766	3807.407	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	1719.804	2260.186	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	606.874	806.597	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.417	0.401	0.376
's ratio				
Cohesi	kiloJoul	83.969	94.480	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 713.3 newtons per square metre per unit weight fraction	increases at rate 9.4 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 1080.764 newtons per square metre per unit weight fraction	increases at rate 1159.072 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 399.447 newtons per square metre per unit weight fraction	increases at rate 450.787 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0317 0 per unit weight fraction	decreases at rate 0.0504 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 21.021 kiloJoule per mole per unit weight fraction	increases at rate 29.628 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and butylene_isophthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth bisphen carbonate and butylene terepthalate

Sasmita Badpanda¹, Dr Tapan Dash²

¹180705120019@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and butylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and butylene_terepthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and butylene_terepthalate

Property			Results for	
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	345.485	406.766	466.509
Density	kg per	1.237	1.153	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	14.676	164.832	1595.547
permeabili	m			
ty				
Nitrogen	Per	3.114	42.482	493.508
permeabili	m			
ty				
Carbon	Per	54.304	756.895	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 122.6 oC per unit weight	increases at rate 119.5 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.168 kg per cubic metre	decreases at rate 0.146 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 300.3 Perm per unit	increases at rate 2861.4 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 78.7 Perm per unit weight	increases at rate 902.1 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 1405.2 Perm per unit	increases at rate 16430.9 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and butylene_terepthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and butylene_terepthalate

Arghyarupa Dhal¹, Dr Tapan Dash²

¹190705120010@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and butylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and butylene_terepthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and butylene_terepthalate

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.544	1.559	1.572
index				
Volume	Ohm-	5913188000000000.000	142694700000000000.000	324667800000000000.000
resistivity	metre			

Dielectric	0	3.114	2.923	2.744
constant				
Coefficien	/K	280.133	240.960	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.205	0.189	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.029 0 per unit weight	increases at rate 0.026 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 16712564000000000	increases at rate 36394620000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.383 0 per unit weight	decreases at rate 0.357 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 78.3 /K per unit weight	decreases at rate 57.8 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.031 W/(m·K) per unit	decreases at rate 0.03 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and butylene_terepthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and butylene_terepthalate

Jyotirmayee Dash¹, Dr Padmaja Pattanayak²

¹180705120044@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and butylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and butylene_terepthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and butylene_terepthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3912.751	3920.721	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	1869.451	2264.620	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	658.086	806.642	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.420	0.404	0.376
's ratio				
Cohesi	kiloJoul	83.969	94.480	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 15.9 newtons per square metre per unit weight fraction	decreases at rate 217.3 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 790.338 newtons per square metre per unit weight fraction	increases at rate 1150.204 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 297.112 newtons per square metre per unit weight fraction	increases at rate 450.697 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0333 0 per unit weight fraction	decreases at rate 0.0558 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 21.021 kiloJoule per mole per unit weight fraction	increases at rate 29.628 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and butylene_terepthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and ethylene_isophthalate

Satyaranjan Behera¹, Sravan Sahoo²

¹190705100021@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene_isophthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene_isophthalate

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	325.591	396.759	466.509	
Density	kg per	1.317	1.187	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	6.631	117.842	1595.547
permeabili	m			
ty				
Nitrogen	Per	1.320	29.564	493.508
permeabili	m			
ty				
Carbon	Per	22.857	525.154	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 142.3 oC per unit weight	increases at rate 139.5 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.261 kg per cubic metre	decreases at rate 0.214 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 222.4 Perm per unit	increases at rate 2955.4 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 56.5 Perm per unit weight	increases at rate 927.9 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 1004.6 Perm per unit	increases at rate 16894.4 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and ethylene_isophthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and ethylene_isophthalate

Smrutishree Priyadarsini Behera¹, Mr. Chittaranjan Routray²

¹180705100080@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene_isophthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene_isophthalate

Property			Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.556	1.565	1.572	
index					
Volume	Ohm-	27194300000000000.000	101655700000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric	0	3.283	2.996	2.744
constant				
Coefficien	/K	295.740	246.590	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.210	0.192	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.017 0 per unit weight	increases at rate 0.014 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 14892280000000000	increases at rate 44602420000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.573 0 per unit weight	decreases at rate 0.504 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 98.3 /K per unit weight	decreases at rate 69.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.036 W/(m·K) per unit	decreases at rate 0.035 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and ethylene_isophthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and ethylene_isophthalate

Alivajyoti Barik¹, Sravan Sahoo²

¹190705100020@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene_isophthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene_isophthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	4022.684	3995.934	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	2275.292	2575.435	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	809.292	924.698	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.406	0.393	0.376
's ratio				
Cohesi	kiloJoul	74.087	87.550	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 53.5 newtons per square metre per unit weight fraction	decreases at rate 367.7 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 600.286 newtons per square metre per unit weight fraction	increases at rate 528.574 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 230.814 newtons per square metre per unit weight fraction	increases at rate 214.585 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0263 0 per unit weight fraction	decreases at rate 0.0335 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 26.925 kiloJoule per mole per unit weight fraction	increases at rate 43.489 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and ethylene_isophthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and ethylene_terepthalate

Debasmita Patri¹, Susant K. Biswal²

¹190705100006@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene_terepthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene_terepthalate

Property		Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	368.161	417.783	466.509
Density	kg per	1.317	1.187	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	6.631	117.842	1595.547
permeabili	m			
ty				
Nitrogen	Per	1.320	29.564	493.508
permeabili	m			
ty				
Carbon	Per	22.857	525.154	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 99.2 oC per unit weight	increases at rate 97.5 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.261 kg per cubic metre per unit weight fraction	decreases at rate 0.214 kg per cubic metre per unit weight fraction
Oxygen permeability	increases at rate 222.4 Perm per unit weight fraction	increases at rate 2955.4 Perm per unit weight fraction
Nitrogen permeability	increases at rate 56.5 Perm per unit weight	increases at rate 927.9 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 1004.6 Perm per unit	increases at rate 16894.4 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and ethylene_terepthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and ethylene_terepthalate

Radharani Das¹, Dr Santosh Satapathy²

¹180705120006@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene_terepthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene_terepthalate

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.556	1.565	1.572
index				
Volume	Ohm-	27194300000000000.000	101655700000000000.000	324667800000000000.000
resistivity	metre			

Dielectric	0	3.283	2.996	2.744
constant				
Coefficien	/K	264.237	235.050	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.210	0.192	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.017 0 per unit weight	increases at rate 0.014 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 14892280000000000	increases at rate 44602420000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.573 0 per unit weight	decreases at rate 0.504 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 58.4 /K per unit weight	decreases at rate 46 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.036 W/(m·K) per unit	decreases at rate 0.035 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and ethylene_terepthalate. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and ethylene_terepthalate

Sonalimadhusmita Mallick¹, Mr. Shraban Kumar Sahoo²

¹180705100011@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and ethylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and ethylene_terepthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and ethylene_terepthalate

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	4411.336	4125.155	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	2294.199	2528.705	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	811.634	904.508	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.413	0.398	0.376
's ratio				
Cohesi	kiloJoul	74.087	87.550	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 572.4 newtons per square metre per unit weight fraction	decreases at rate 626.1 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 469.012 newtons per square metre per unit weight fraction	increases at rate 622.034 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 185.75 newtons per square metre per unit weight fraction	increases at rate 254.965 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.031 0 per unit weight fraction	decreases at rate 0.044 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 26.925 kiloJoule per mole per unit weight fraction	increases at rate 43.489 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and ethylene_terepthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxyethylene

Soumya Ranjan Mohanty¹, Dr Santosh Satapathy²

¹180705120002@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and oxyethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxyethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen dimeth carbon bisphen dimeth carbon bisp		bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	204.934	314.573	414.398	
Density	kg per	1.127	1.150	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	658.412	454.819	288.203
permeabili	m			
ty				
Nitrogen	Per	189.668	127.182	77.690
permeabili	m			
ty				
Carbon	Per	3421.221	2286.551	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 219.3 oC per unit weight	increases at rate 199.6 oC per unit weight
temperature	fraction	fraction
Density	increases at rate 0.046 kg per cubic metre per unit weight fraction	increases at rate 0.048 kg per cubic metre per unit weight fraction
Oxygen permeability	decreases at rate 407.2 Perm per unit weight fraction	decreases at rate 333.2 Perm per unit weight fraction
Nitrogen permeability	decreases at rate 125 Perm per unit weight	decreases at rate 99 Perm per unit weight
	fraction	fraction
Carbon dioxide	decreases at rate 2269.3 Perm per unit	decreases at rate 1790.9 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and oxyethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxyethylene

Sourav Ketan Rath¹, Dr Padmaja Pattanayak²

¹180705120032@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxyethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	Properties	of com	nosite o	fhisnhen	dimeth	carbonate	and c	wveth	lene
	riopernes		posite o.	i bispiten	unneun	carbonate	anu c	лусшу	lene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.465	1.523	1.587	
index					
Volume	Ohm-	292826500000000000.000	212942100000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	2.767	2.836	2.905
constant				
Coefficien	/K	858.465	305.157	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.217	0.204	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.117 0 per unit weight	increases at rate 0.128 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 15976880000000000	decreases at rate 11584960000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.138 0 per unit weight	increases at rate 0.138 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1106.6 /K per unit weight	decreases at rate 136.6 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.026 W/(m·K) per unit	decreases at rate 0.023 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and oxyethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxyethylene

Lipsa Subhadarsini¹, Dr. Dojalisa Sahu²

¹180705100041@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxyethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	1255.800	2844.313	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	2.885	1352.166	2212.361
modulu	s per			
s	square			
	metre			
Shear	newton	0.962	475.857	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.500	0.421	0.409
s ratio				
Cohesiv	kiloJoul	13.030	24.848	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 3177 newtons per square metre per unit weight fraction	increases at rate 2373.9 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 2698.563 newtons per square metre per unit weight fraction	increases at rate 1720.39 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 949.791 newtons per square metre per unit weight fraction	increases at rate 618.97 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.1577 0 per unit weight fraction	decreases at rate 0.0245 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 23.635 kiloJoule per mole per unit weight fraction	increases at rate 136.425 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and oxyethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxymethylene

Biswaranjan Sahoo¹, Dr Padmaja Pattanayak²

¹180705120037@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and oxymethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxymethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxymethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	213.273	320.020	414.398	
Density	kg per	1.306	1.236	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	619.548	410.486	288.203
permeabili	m			
ty				
Nitrogen	Per	177.602	113.843	77.690
permeabili	m			
ty				
Carbon	Per	3201.837	2044.865	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 213.5 oC per unit weight	increases at rate 188.8 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.138 kg per cubic metre	decreases at rate 0.124 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 418.1 Perm per unit weight fraction	decreases at rate 244.6 Perm per unit weight fraction	
Nitrogen permeability	decreases at rate 127.5 Perm per unit	decreases at rate 72.3 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 2313.9 Perm per unit	decreases at rate 1307.6 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and oxymethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxymethylene

Subhrajit Dash¹, Dr Nibedita Nayak²

¹180705120052@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxymethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxymethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxymethylene

Prope	erty	ty Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.465	1.528	1.587
index				
Volume	Ohm-	6091853000000000.000	101674300000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	3.108	2.996	2.905
constant				
Coefficien	/K	833.233	300.428	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.240	0.215	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.126 0 per unit weight	increases at rate 0.119 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 8151154000000000	increases at rate 10668600000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.222 0 per unit weight	decreases at rate 0.183 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1065.6/K per unit weight	decreases at rate 127.2 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.05 W/(m·K) per unit	decreases at rate 0.044 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and oxymethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxymethylene

Abhisikta Mahanta¹, Dojalisa Sahu²

¹180705100034@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxymethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxymethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxymethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	789.159	3068.272	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	4.045	1367.095	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	1.349	479.433	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.499	0.426	0.409
s ratio				
Cohesiv	kiloJoul	8.089	17.063	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 4558.2 newtons per square metre per unit weight fraction	increases at rate 1925.9 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 2726.1 newtons per square metre per unit weight fraction	increases at rate 1690.532 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 956.169 newtons per square metre per unit weight fraction	increases at rate 611.819 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.1468 0 per unit weight fraction	decreases at rate 0.0344 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 17.948 kiloJoule per mole per unit weight fraction	increases at rate 151.994 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and oxymethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxyphenyl

Nirnimesh Dalai¹, Dr Nibedita Nayak²

¹180705120046@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyphenyl on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxyphenyl

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	357.304	385.589	414.398
Density	kg per	1.222	1.198	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	201.679	242.316	288.203
permeabili	m			
ty				
Nitrogen	Per	52.828	64.416	77.690
permeabili	m			
ty				
Carbon	Per	942.923	1151.636	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 56.6 oC per unit weight	increases at rate 57.6 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.049 kg per cubic metre	decreases at rate 0.047 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 81.3 Perm per unit weight	increases at rate 91.8 Perm per unit weight
	fraction	fraction
Nitrogen permeability	increases at rate 23.2 Perm per unit weight	increases at rate 26.5 Perm per unit weight
	fraction	fraction
Carbon dioxide	increases at rate 417.4 Perm per unit	increases at rate 478.9 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and oxyphenyl. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxyphenyl

Anjali Sahoo¹, Dr Padmaja Pattanayak²

¹180705120029@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyphenyl on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

T_{-1}	$- \mathbf{f} - \mathbf{f} + \mathbf{f} $. 1 1	1
Table Fromerfies	of composite of his	nnen dimeth cai	\mathbf{n} onate and oxymperive
		phone announe our	bollate and on yphenyl

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.621	1.604	1.587	
index					
Volume	Ohm-	182508600000000000.000	168206500000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	2.869	2.887	2.905
constant				
Coefficien	/K	271.616	253.195	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.206	0.199	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.035 0 per unit weight	decreases at rate 0.033 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 2860420000000000	decreases at rate 2637840000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.035 0 per unit weight	increases at rate 0.035 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 36.8 /K per unit weight	decreases at rate 32.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.013 W/(m·K) per unit	decreases at rate 0.013 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and oxyphenyl. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxyphenyl

Suman Kumar Shaw¹, Susant K. Biswal²

¹190705100002@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyphenyl on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	. Properties	of composite	of bisphen_	dimeth	carbonate and	oxyphenyl
---------	--------------	--------------	-------------	--------	---------------	-----------

Property		Results for			
Name	Unit	0.0 weight fraction of 0.5 weight fraction of		1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3848.015	3951.783	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1868.283	2033.714	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	658.273	719.019	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.419	0.414	0.409
s ratio				
Cohesiv	kiloJoul	34.090	49.769	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 207.5 newtons per square metre per unit weight fraction	increases at rate 158.9 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 330.862 newtons per square metre per unit weight fraction	increases at rate 357.294 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 121.493 newtons per square metre per unit weight fraction	increases at rate 132.646 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0097 0 per unit weight fraction	decreases at rate 0.0114 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 31.358 kiloJoule per mole per unit weight fraction	increases at rate 86.582 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and oxyphenyl. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and oxypropylene

Lipsa Bal¹, Dr. Srikant Sahu²

¹180705100054@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and oxypropylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxypropylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxypropylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	227.650	324.207	414.398	
Density	kg per	1.023	1.093	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	1188.898	652.441	288.203
permeabili	m			
ty				
Nitrogen	Per	359.139	187.810	77.690
permeabili	m			
ty				
Carbon	Per	6512.338	3387.435	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 193.1 oC per unit weight	increases at rate 180.4 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.141 kg per cubic metre per unit weight fraction	increases at rate 0.162 kg per cubic metre per unit weight fraction	
Oxygen permeability	decreases at rate 1072.9 Perm per unit weight fraction	decreases at rate 728.5 Perm per unit weight fraction	
Nitrogen permeability	decreases at rate 342.7 Perm per unit	decreases at rate 220.2 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	decreases at rate 6249.8 Perm per unit	decreases at rate 3992.7 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and oxypropylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxypropylene

Ashish Kumar Majhi¹, Dojalisa Sahu²

¹190705100013@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxypropylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxypropylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Pr	operties of	f composit	e of bispher	n dimeth	carbonate and	oxypropylene
	opernes of	i composit	e or orspirer	i_uiiicui	caroonate and	· oxypropyrene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.467	1.521	1.587	
index					
Volume	Ohm-	779896700000000000.000	362030700000000000.000	155017300000000000.000	
resistivity	metre				

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Dielectric	0	2.554	2.721	2.905
constant				
Coefficien	/K	793.048	296.891	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.184	0.188	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.109 0 per unit weight	increases at rate 0.131 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 83573200000000000	decreases at rate 41402680000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.333 0 per unit weight	increases at rate 0.368 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 992.3 /K per unit weight	decreases at rate 120.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.009 W/(m·K) per unit	increases at rate 0.008 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and oxypropylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and oxypropylene

Monalisa Sahoo¹, Mr. Shraban Kumar Sahoo²

¹180705100005@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxypropylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxypropylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and oxypropylene

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	1339.108	2836.692	4031.244
modulu	s per			
S	square			
	metre			

Young's	newton	1.861	1520.993	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	0.621	539.116	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.500	0.411	0.409
s ratio				
Cohesiv	kiloJoul	16.922	31.079	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 2995.2 newtons per square metre per unit weight fraction	increases at rate 2389.1 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 3038.263 newtons per square metre per unit weight fraction	increases at rate 1382.736 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 1076.991 newtons per square metre per unit weight fraction	increases at rate 492.453 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.1783 0 per unit weight decreases at rate 0.0042 0 per u fraction		
Cohesive energy (Fedors) at 298K	increases at rate 28.314 kiloJoule per mole per unit weight fraction	increases at rate 123.962 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and oxypropylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxyethylene

Priyanka Priyadarshani Karan¹, Dr Santosh Satapathy²

¹180705120004@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and oxyethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxyethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxyethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	204.934	341.523	466.509	
Density	kg per	1.127	1.103	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	658.412	1053.777	1595.547
permeabili	m			
ty				
Nitrogen	Per	189.668	315.251	493.508
permeabili	m			
ty				
Carbon	Per	3421.221	5710.365	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 273.2 oC per unit weight	increases at rate 250 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.049 kg per cubic metre	decreases at rate 0.047 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 790.7 Perm per unit	increases at rate 1083.5 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 251.2 Perm per unit	increases at rate 356.5 Perm per unit	
	weight fraction weight fraction		
Carbon dioxide	increases at rate 4578.3 Perm per unit	increases at rate 6524 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and oxyethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxyethylene

Kunmee Das¹, Dr Santosh Satapathy²

¹180705120001@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxyethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxyethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for				
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of		
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo		
		nate	nate	nate		
Refractive	0	1.465	1.518	1.572		
index						
Volume	Ohm-	29282650000000000.000	308807900000000000.000	324667800000000000.000		
resistivity	metre					

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxyethylene

Dielectric constant	0	2.767	2.755	2.744
Coefficien t of volumetri c thermal expansion	/K	858.465	283.108	212.051
Thermal conductivi ty	W/(m· K)	0.217	0.195	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.107 0 per unit weight	increases at rate 0.107 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 3196280000000000	increases at rate 3171980000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.023 0 per unit weight	decreases at rate 0.022 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1150.7 /K per unit weight	decreases at rate 142.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.045 W/(m·K) per unit	decreases at rate 0.041 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and oxyethylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxyethylene

Pragyan Parimita Dash¹, Sravan Sahoo²

¹190705100022@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxyethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxyethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	1255.800	2938.895	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	2.885	1560.944	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.962	552.947	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.411	0.376
's ratio				
Cohesi	kiloJoul	13.030	24.995	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 3366.2 newtons per square metre per unit weight fraction	increases at rate 1746.4 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 3116.119 newtons per	increases at rate 2557.556 newtons per	
	square metre per unit weight fraction	square metre per unit weight fraction	
Shear modulus	increases at rate 1103.97 newtons per	increases at rate 958.089 newtons per	
	square metre per unit weight fraction	square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.1763 0 per unit weight	decreases at rate 0.0713 0 per unit weight	
	fraction	fraction	
Cohesive energy	increases at rate 23.929 kiloJoule per	increases at rate 168.599 kiloJoule per	
(Fedors) at 298K	mole per unit weight fraction	mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and oxyethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxymethylene

Swapna Das¹, Dr Tapan Dash²

¹180705120026@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and oxymethylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxymethylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxymethylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	213.273	347.173	466.509	
Density	kg per	1.306	1.182	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	619.548	996.439	1595.547
permeabili	m			
ty				
Nitrogen	Per	177.602	296.760	493.508
permeabili	m			
ty				
Carbon	Per	3201.837	5372.755	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 267.8 oC per unit weight	increases at rate 238.7 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.247 kg per cubic metre	decreases at rate 0.205 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 753.8 Perm per unit	increases at rate 1198.2 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 238.3 Perm per unit	increases at rate 393.5 Perm per unit
	weight fraction	weight fraction
Carbon dioxide	increases at rate 4341.8 Perm per unit	increases at rate 7199.2 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and oxymethylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxymethylene

Lelin Champati¹, Dr Padmaja Pattanayak²

¹180705120034@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxymethylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxymethylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxymethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.465	1.522	1.572	
index					
Volume	Ohm-	6091853000000000.000	15606720000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric	0	3.108	2.903	2.744
constant				
Coefficien	/K	833.233	278.884	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.240	0.205	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.115 0 per unit weight	increases at rate 0.099 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 19029734000000000	increases at rate 33720120000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.409 0 per unit weight	decreases at rate 0.318 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1108.7 /K per unit weight	decreases at rate 133.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.069 W/(m·K) per unit	decreases at rate 0.062 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and oxymethylene. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxymethylene

Arundhati Maharana¹, Dr. Ashish Kumar Sahoo²

¹180705100015@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxymethylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxymethylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxymethylene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	789.159	3058.648	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	4.045	1523.336	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1.349	537.524	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.499	0.417	0.376
's ratio				
Cohesi	kiloJoul	8.089	17.016	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 4539 newtons per square metre per unit weight fraction	increases at rate 1506.9 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 3038.582 newtons per square metre per unit weight fraction	increases at rate 2632.772 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 1072.351 newtons per square metre per unit weight fraction	increases at rate 988.933 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.1643 0 per unit weight fraction	decreases at rate 0.0823 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 17.853 kiloJoule per mole per unit weight fraction	increases at rate 184.557 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and oxymethylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxyphenyl

Biswajit Mohapatra¹, Susant K. Biswal²

¹190705100004@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxyphenyl on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxyphenyl

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	357.304	411.131	466.509	
Density	kg per	1.222	1.147	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	201.679	591.618	1595.547
permeabili	m			
ty				
Nitrogen	Per	52.828	168.968	493.508
permeabili	m			
ty				
Carbon	Per	942.923	3044.933	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 107.7 oC per unit weight	increases at rate 110.8 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.151 kg per cubic metre	decreases at rate 0.134 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 779.9 Perm per unit weight fraction	increases at rate 2007.9 Perm per unit weight fraction	
Nitrogen permeability	increases at rate 232.3 Perm per unit	increases at rate 649.1 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 4204 Perm per unit	increases at rate 11854.9 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and oxyphenyl. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxyphenyl

Animesh Lenka¹, Mr. Shraban Kumar Sahoo²

¹180705100001@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxyphenyl on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.621	1.595	1.572
index				
Volume	Ohm-	18250860000000000.000	245365900000000000.000	32466780000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxyphenyl

Dielectric constant	0	2.869	2.805	2.744
Coefficien t of volumetri c thermal expansion	/K	271.616	238.583	212.051
Thermal conductivi ty	W/(m∙ K)	0.206	0.190	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.053 0 per unit weight	decreases at rate 0.046 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 12571460000000000	increases at rate 15860380000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.129 0 per unit weight	decreases at rate 0.122 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 66.1 /K per unit weight	decreases at rate 53.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.031 W/(m·K) per unit	decreases at rate 0.032 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and oxyphenyl. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxyphenyl

Malaya Ranjan Turuk¹, Dr.Pratap Chhottaray²

¹180705100062@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxyphenyl on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of tetmeth	bisphen	carbonate and	oxyphenyl
----------	------------	--------------	------------	---------	---------------	-----------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3848.015	3865.140	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	1868.283	2252.796	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	658.273	802.931	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.419	0.403	0.376
's ratio				
Cohesi	kiloJoul	34.090	51.298	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 34.3 newtons per square metre per unit weight fraction	decreases at rate 106.1 newtons per square metre per unit weight fraction	
Young's modulus increases at rate 769.026 newtons square metre per unit weight fraction		increases at rate 1173.852 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 289.316 newtons per square metre per unit weight fraction	increases at rate 458.121 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0324 0 per unit weight fraction	decreases at rate 0.054 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 34.416 kiloJoule per mole per unit weight fraction	increases at rate 115.993 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and oxyphenyl. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and oxypropylene

Sasmita Jena¹, Mr. Chittaranjan Routray²

¹180705100091@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and oxypropylene. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxypropylene on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxypropylene

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	227.650	351.178	466.509	
Density	kg per	1.023	1.050	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	1188.898	1452.578	1595.547
permeabili	m			
ty				
Nitrogen	Per	359.139	445.911	493.508
permeabili	m			
ty				
Carbon	Per	6512.338	8100.227	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 247.1 oC per unit weight	increases at rate 230.7 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.055 kg per cubic metre	increases at rate 0.059 kg per cubic metre	
	per unit weight fraction per unit weight fraction		
Oxygen permeability	increases at rate 527.4 Perm per unit	increases at rate 285.9 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 173.5 Perm per unit	increases at rate 95.2 Perm per unit weight	
	weight fraction	fraction	
Carbon dioxide	increases at rate 3175.8 Perm per unit	increases at rate 1744.3 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and oxypropylene. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and oxypropylene

Sagar Rout¹, Mr. Shraban Kumar Sahoo²

¹180705100009@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxypropylene. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxypropylene on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	Properties	of composite	of tetmeth	hisnhen	carbonate and	1 oxypropylene
Table 1.	riopenies	of composite	of tennetin	_oispiteit_		i oxypropyrene

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.467	1.517	1.572	
index					
Volume	Ohm-	779896700000000000.000	508094200000000000.000	324667800000000000.000	
resistivity	metre				

Dielectric constant	0	2.554	2.647	2.744
Coefficien t of volumetri c thermal expansion	/K	793.048	275.964	212.051
Thermal conductivi ty	W/(m∙ K)	0.184	0.179	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.1 0 per unit weight	increases at rate 0.11 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 54360500000000000	decreases at rate 36685280000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.186 0 per unit weight	increases at rate 0.195 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 1034.2 /K per unit weight	decreases at rate 127.8 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.01 W/(m·K) per unit	decreases at rate 0.009 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and oxypropylene. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and oxypropylene

Debabrata Mishra¹, Dr Tapan Dash²

¹190705120003@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and oxypropylene. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and oxypropylene on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and oxypropylene

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	1339.108	2838.307	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	1.861	1725.383	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	0.621	616.788	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.500	0.399	0.376
's ratio				
Cohesi	kiloJoul	16.922	31.482	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	increases at rate 2998.4 newtons per square metre per unit weight fraction	increases at rate 1947.6 newtons per square metre per unit weight fraction	
Young's modulus	Young's modulus increases at rate 3447.043 newtons per increases at rate 2228.678 new square metre per unit weight fraction square metre per unit weight fraction		
Shear modulus	increases at rate 1232.335 newtons per square metre per unit weight fraction	increases at rate 830.406 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.2022 0 per unit weight decreases at rate 0.0457 0 per fraction		
Cohesive energy (Fedors) at 298K	increases at rate 29.12 kiloJoule per mole per unit weight fraction	increases at rate 155.624 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and oxypropylene. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benzamide

Anubhaba Mohapatra¹, Mr. Shraban Kumar Sahoo²

¹180705100008@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and benzamide. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzamide on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benzamide

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	603.481	510.692	414.398
Density	kg per	1.295	1.232	1.174

	cubi			
	с			
	metr			
	e			
Oxygen	Per	0.129	6.820	288.203
permeabili	m			
ty				
Nitrogen	Per	0.019	1.361	77.690
permeabili	m			
ty				
Carbon	Per	0.313	23.565	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	decreases at rate 185.6 oC per unit weight	decreases at rate 192.6 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.126 kg per cubic metre	decreases at rate 0.114 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 13.4 Perm per unit weight	increases at rate 562.8 Perm per unit
	fraction	weight fraction
Nitrogen permeability	increases at rate 2.7 Perm per unit weight	increases at rate 152.7 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 46.5 Perm per unit weight	increases at rate 2735 Perm per unit
permeability	fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and benzamide. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benzamide

Madhumita Pahi¹, Mr. Chittaranjan Routray²

¹180705100088@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and benzamide. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzamide on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Pro	perties	of com	posite	of bis	phen	dimeth	carbonate a	nd 1	benzamide
1 4010 1.	110			posite	01 015	phon	annetn	curoonate u	iiu i	Joinzannae

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.630	1.607	1.587	
index					
Volume	Ohm-	1720322000000000.000	1673431000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric constant	0	3.882	3.388	2.905
Coefficien t of volumetric thermal expansion	/K	166.307	194.770	236.835
Thermal conductivi ty	W/(m· K)	0.205	0.199	0.193

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.046 0 per unit weight	decreases at rate 0.041 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 3002797600000000	increases at rate 27656598000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.988 0 per unit weight	decreases at rate 0.967 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 56.9 /K per unit weight	increases at rate 84.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.013 W/(m·K) per unit	decreases at rate 0.013 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and benzamide. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benzamide

Amitosh Ray¹, Mr. Chittaranjan Routray²

¹180705100029@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and benzamide. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzamide on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	7919.206	5868.347	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	3893.074	3042.513	2212.361
S	souare			
5	metre			
Shear	newton	1372.669	1076.166	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.418	0.414	0.409
s ratio				
Cohesiv	kiloJoul	64.611	73.687	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus decreases at rate 4101.7 newtons per square metre per unit weight fraction		decreases at rate 3674.2 newtons per square metre per unit weight fraction	
Young's modulus	decreases at rate 1701.122 newtons per square metre per unit weight fraction square metre per unit weight fra		
Shear modulus	decreases at rate 593.006 newtons per square metre per unit weight fraction	decreases at rate 581.647 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.009 0 per unit weight fraction	decreases at rate 0.0101 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 18.151 kiloJoule per mole per unit weight fraction	increases at rate 38.746 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and benzamide. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and nylon6

Ajay Kar¹, Dr Nibedita Nayak²

¹180705120058@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and nylon6. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon6 on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and nylon6

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	328.410	373.554	414.398	
Density	kg per	1.078	1.124	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	6.731	41.653	288.203
permeabili	m			
ty				
Nitrogen	Per	1.342	9.612	77.690
permeabili	m			
ty				
Carbon	Per	23.234	169.166	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition temperature	increases at rate 90.3 oC per unit weight fraction	increases at rate 81.7 oC per unit weight fraction
Density	increases at rate 0.092 kg per cubic metre per unit weight fraction	increases at rate 0.1 kg per cubic metre per unit weight fraction
Oxygen permeability	increases at rate 69.8 Perm per unit weight fraction	increases at rate 493.1 Perm per unit weight fraction
Nitrogen permeability	increases at rate 16.5 Perm per unit weight	increases at rate 136.2 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 291.9 Perm per unit	increases at rate 2443.8 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and nylon6. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and nylon6

Kiransankar Senapati¹, Dr Tapan Dash²

¹190705120006@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and nylon6. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon6 on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.513	1.548	1.587	
index					
Volume	Ohm-	11720750000000000.000	38553880000000000.000	155017300000000000.000	
resistivity	metre				

Table 1. Properties of composite of bisphen dimeth carbonate and nylon6

Dielectric	0	3.466	3.207	2.905
constant				
Coefficien	/K	293.424	260.718	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.197	0.195	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.07 0 per unit weight	increases at rate 0.078 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 5366626000000000	increases at rate 23292684000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.517 0 per unit weight	decreases at rate 0.604 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 65.4 /K per unit weight	decreases at rate 47.8 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.004 W/(m·K) per unit	decreases at rate 0.004 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and nylon6. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and nylon6

Shrimaya Das¹, Susant K. Biswal²

¹190705100008@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and nylon6. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon6 on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties o	f composite	of bisphen_	dimeth	carbonate	and ny	ylon6
-----------------------	-------------	-------------	--------	-----------	--------	-------

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	4560.567	4420.569	4031.244
modulu	s per			
S	square			
	metre			

Young's	newton	2027.928	2147.367	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	711.110	756.627	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.426	0.419	0.409
s ratio				
Cohesiv	kiloJoul	60.003	70.183	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus decreases at rate 280 newtons per square metre per unit weight fraction		decreases at rate 778.7 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 238.878 newtons per square metre per unit weight fraction	increases at rate 129.988 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 91.034 newtons per square metre per unit weight fraction	increases at rate 57.431 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0137 0 per unit weight fraction	decreases at rate 0.021 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 20.361 kiloJoule per mole per unit weight fraction	increases at rate 45.753 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and nylon6. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and nylon12

Shakti Swarup Mohapatra¹, Sravan Sahoo²

¹19070510017@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and nylon12. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon12 on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and nylon12

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	268.888	342.721	414.398
Density	kg per	0.980	1.068	1.174

	cubi			
	с			
	metr			
	e			
Oxygen	Per	64.683	134.770	288.203
permeabili	m			
ty				
Nitrogen	Per	15.464	34.177	77.690
permeabili	m			
ty				
Carbon	Per	273.225	607.832	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 147.7 oC per unit weight	increases at rate 143.4 oC per unit weight
temperature	fraction	fraction
Density	increases at rate 0.177 kg per cubic metre	increases at rate 0.212 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 140.2 Perm per unit	increases at rate 306.9 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 37.4 Perm per unit weight	increases at rate 87 Perm per unit weight
	fraction	fraction
Carbon dioxide	increases at rate 669.2 Perm per unit	increases at rate 1566.5 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and nylon12. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and nylon12

Lipsa Priyadarshini¹, Dr Santosh Satapathy²

¹180705120009@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and nylon12. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon12 on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property			Results for	
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.492	1.535	1.587
index				
Volume	Ohm-	134359100000000000.000	143162900000000000.000	155017300000000000.000
resistivity	metre			

Table 1. Properties of composite of bisphen dimeth carbonate and nylon12

Dielectric	0	2.936	2.922	2.905
constant				
Coefficien	/K	696.671	282.201	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.186	0.189	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.084 0 per unit weight	increases at rate 0.105 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 1760760000000000	increases at rate 2370880000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.028 0 per unit weight	decreases at rate 0.035 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 828.9 /K per unit weight	decreases at rate 90.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.007 W/(m·K) per unit	increases at rate 0.006 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and nylon12. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and nylon12

Ananta Ku. Sahoo¹, Dr Padmaja Pattanayak²

¹180705120043@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and nylon12. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon12 on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. F	Properties	of composite	of bisphen	dimeth	carbonate	and nylo	n12
		1				-	

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3509.426	3613.141	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1546.425	1738.828	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	542.013	612.353	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.427	0.420	0.409
s ratio				
Cohesiv	kiloJoul	89.650	91.140	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 207.4 newtons per square metre per unit weight fraction	increases at rate 836.2 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 384.806 newtons per square metre per unit weight fraction	increases at rate 947.066 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 140.681 newtons per square metre per unit weight fraction	increases at rate 345.979 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0135 0 per unit weight	decreases at rate 0.0225 0 per unit weight
	fraction	fraction
Cohesive energy	increases at rate 2.979 kiloJoule per mole	increases at rate 3.84 kiloJoule per mole
(Fedors) at 298K	per unit weight fraction	per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and nylon12. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and nylon66

Pankaj Das¹, Dr. Pratap Chhottaray²

¹180705100071@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and nylon66. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon66 on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and nylon66

Proper	ty		Results for	
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	326.725	371.975	414.398
Density	kg per	1.078	1.124	1.174

	cubi			
	c			
	metr			
	e			
Oxygen	Per	6.731	41.653	288.203
permeabili	m			
ty				
Nitrogen	Per	1.342	9.612	77.690
permeabili	m			
ty				
Carbon	Per	23.234	169.166	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition temperature	increases at rate 90.5 oC per unit weight fraction	increases at rate 84.8 oC per unit weight fraction
Density	increases at rate 0.092 kg per cubic metre per unit weight fraction	increases at rate 0.1 kg per cubic metre per unit weight fraction
Oxygen permeability	increases at rate 69.8 Perm per unit weight fraction	increases at rate 493.1 Perm per unit weight fraction
Nitrogen permeability	increases at rate 16.5 Perm per unit weight	increases at rate 136.2 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 291.9 Perm per unit	increases at rate 2443.8 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and nylon66. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and nylon66

Subhadra Sahu¹, Mr. Chittaranjan Routray²

¹180705100073@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and nylon66. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon66 on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.513	1.548	1.587
index				
Volume	Ohm-	11720750000000000.000	3855388000000000.000	155017300000000000.000
resistivity	metre			

Table 1. Properties of composite of bisphen dimeth carbonate and nylon66

Dielectric	0	3.466	3.207	2.905
constant				
Coefficien	/K	294.804	261.739	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.197	0.195	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.07 0 per unit weight	increases at rate 0.078 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 5366626000000000	increases at rate 23292684000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.517 0 per unit weight	decreases at rate 0.604 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 66.1 /K per unit weight	decreases at rate 49.8 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.004 W/(m·K) per unit	decreases at rate 0.004 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and nylon66. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and nylon66

Pratibha Swain¹, Dr Nibedita Nayak²

¹180705120056@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and nylon66. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and nylon66 on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1	. Properties	of composite	of bisphen	dimeth	carbonate	and nyl	lon66
	1	1				2	

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	4541.758	4407.768	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	2015.515	2138.488	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	706.684	753.445	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.426	0.419	0.409
s ratio				
Cohesiv	kiloJoul	120.006	107.317	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 268 newtons per square metre per unit weight fraction	decreases at rate 753 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 245.946 newtons per square metre per unit weight fraction	increases at rate 147.746 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 93.523 newtons per square metre per unit weight fraction	increases at rate 63.794 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0138 0 per unit weight fraction	decreases at rate 0.0212 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	decreases at rate 25.378 kiloJoule per mole per unit weight fraction	decreases at rate 28.514 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and nylon66. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and benzamide

Arpita Biswal¹, Dr. Ashish Kumar Sahoo²

¹180705100019@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and benzamide. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and benzamide on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and benzamide

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	603.481	535.581	466.509	
Density	kg per	1.295	1.177	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	0.129	18.460	1595.547
permeabili	m			
ty				
Nitrogen	Per	0.019	3.990	493.508
permeabili	m			
ty				
Carbon	Per	0.313	69.720	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	decreases at rate 135.8 oC per unit weight	decreases at rate 138.1 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.234 kg per cubic metre	decreases at rate 0.195 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 36.7 Perm per unit weight	increases at rate 3154.2 Perm per unit
	fraction	weight fraction
Nitrogen permeability	increases at rate 7.9 Perm per unit weight	increases at rate 979 Perm per unit weight
	fraction	fraction
Carbon dioxide	increases at rate 138.8 Perm per unit	increases at rate 17805.3 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and benzamide. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and benzamide

Ghanashyam Mahakur¹, Dr Srikant Sahu²

¹180705100060@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and benzamide. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and benzamide on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.630	1.598	1.572	
index					
Volume	Ohm-	172032200000000.000	2615965000000000.000	32466780000000000.000	
resistivity	metre				

Table 1. Properties of composite of tetmeth_bisphen_carbonate and benzamide

Dielectric	0	3.882	3.291	2.744
constant				
Coefficien	/K	166.307	186.221	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.205	0.190	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.064 0 per unit weight	decreases at rate 0.053 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 4887865600000000	increases at rate 59701630000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.182 0 per unit weight	decreases at rate 1.094 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 39.8 /K per unit weight	increases at rate 51.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.031 W/(m·K) per unit	decreases at rate 0.031 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and benzamide. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and benzamide

Maitree Mohapatra¹, Dr Padmaja Pattanayak²

¹180705120039@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and benzamide. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and benzamide on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

T-1.1. 1	D	f	· · · · · · · · · · · · · · · · · · ·	1 1	1	1
Table 1.	Properties	of composite	of tetmeth	bisphen	carbonate and	benzamide
	1	1	_	_ 1 _	_	

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	7919.206	5647.614	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	3893.074	3325.973	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1372.669	1186.282	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.418	0.402	0.376
's ratio				
Cohesi	kiloJoul	64.611	77.004	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 4543.2 newtons per square metre per unit weight fraction	decreases at rate 3671 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 1134.202 newtons per square metre per unit weight fraction	decreases at rate 972.502 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 372.774 newtons per square metre per unit weight fraction	decreases at rate 308.582 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0324 0 per unit weight fraction	decreases at rate 0.052 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 24.785 kiloJoule per mole per unit weight fraction	increases at rate 64.581 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and benzamide. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and nylon12

Premchand Panda¹, Dr. Dojalisa Sahu²

¹180705100042@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon12. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon12 on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and nylon12

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	268.888	368.176	466.509	
Density	kg per	0.980	1.027	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	64.683	312.790	1595.547
permeabili	m			
ty				
Nitrogen	Per	15.464	84.874	493.508
permeabili	m			
ty				
Carbon	Per	273.225	1520.835	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 198.6 oC per unit weight	increases at rate 196.7 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.095 kg per cubic metre	increases at rate 0.105 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 496.2 Perm per unit	increases at rate 2565.5 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 138.8 Perm per unit	increases at rate 817.3 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 2495.2 Perm per unit	increases at rate 14903.1 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and nylon12. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and nylon12

Chittaranjan Biswal¹, Dr. Dojalisa Sahu²

¹180705100046@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon12. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon12 on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of 0.5 weight fraction of		1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.492	1.530	1.572	
index					
Volume	Ohm-	13435910000000000.000	201188200000000000.000	32466780000000000.000	
resistivity	metre				

Table 1. Properties of composite of tetmeth_bisphen_carbonate and nylon12

Centurion Journal of Multidisciplinary Research Special issue: Nov 2020

Dielectric constant	0	2.936	2.848	2.744
Coefficien t of volumetri c thermal expansion	/K	696.671	264.227	212.051
Thermal conductivi ty	W/(m· K)	0.186	0.180	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.074 0 per unit weight	increases at rate 0.084 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 13365820000000000	increases at rate 24695920000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.175 0 per unit weight	decreases at rate 0.208 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 864.9 /K per unit weight	decreases at rate 104.4 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.012 W/(m·K) per unit	decreases at rate 0.011 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and nylon12. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and nylon12

Subhalaxmi Das¹, Sravan Sahoo²

¹190705100018@cutm.ac, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon12. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon12 on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of tetmeth	bisphen	carbonate	and nyl	on12
	1	1		_ 1 _		-	

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	3509.426	3598.356	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	1546.425	1912.420	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	542.013	677.480	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.427	0.411	0.376
's ratio				
Cohesi	kiloJoul	89.650	97.285	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 177.9 newtons per square metre per unit weight fraction	increases at rate 427.5 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 731.99 newtons per	increases at rate 1854.604 newtons per
	square metre per unit weight fraction	square metre per unit weight fraction
Shear modulus	increases at rate 270.935 newtons per	increases at rate 709.022 newtons per
	square metre per unit weight fraction	square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0303 0 per unit weight	decreases at rate 0.0712 0 per unit weight
	fraction	fraction
Cohesive energy	increases at rate 15.269 kiloJoule per	increases at rate 24.019 kiloJoule per
(Fedors) at 298K	mole per unit weight fraction	mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and nylon12. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and nylon6

Rabindra Singh¹, Dr Santosh Satapathy²

¹180705120005@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon6. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon6 on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and nylon6

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	328.410	398.978	466.509	
Density	kg per	1.078	1.079	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	6.731	104.029	1595.547
permeabili	m			
ty				
Nitrogen	Per	1.342	25.838	493.508
permeabili	m			
ty				
Carbon	Per	23.234	458.465	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 141.1 oC per unit weight	increases at rate 135.1 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.001 kg per cubic metre	increases at rate 0.001 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 194.6 Perm per unit	increases at rate 2983 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 49 Perm per unit weight	increases at rate 935.3 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 870.5 Perm per unit	increases at rate 17027.8 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and nylon6. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and nylon6

Harikishan Das¹, Mr. Shraban Kumar Sahoo²

¹180705100003@cutm.ac.in, ²shraban.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon6. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon6 on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.513	1.542	1.572	
index					
Volume	Ohm-	1172075000000000.000	5677675000000000.000	32466780000000000.000	
resistivity	metre				

Table 1. Properties of composite of tetmeth_bisphen_carbonate and nylon6

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Dielectric	0	3.466	3.123	2.744
constant				
Coefficien	/K	293.424	245.319	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.197	0.185	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Refractive index	increases at rate 0.058 0 per unit weight	increases at rate 0.059 0 per unit weight	
	fraction	fraction	
Volume resistivity	increases at rate 9011200000000000	increases at rate 53578210000000000	
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction	
Dielectric constant	decreases at rate 0.685 0 per unit weight	decreases at rate 0.757 0 per unit weight	
	fraction	fraction	
Coefficient of volumetric	decreases at rate 96.2 /K per unit weight	decreases at rate 66.5 /K per unit weight	
thermal expansion	fraction	fraction	
Thermal conductivity	decreases at rate 0.023 W/(m·K) per unit	decreases at rate 0.022 W/(m·K) per unit	
	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and nylon6. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and nylon6

Muskan Maharana¹, Dr Srikant Sahu²

¹180705100061@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon6. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon6 on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	4560.567	4361.418	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	2027.928	2352.673	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	711.110	834.225	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.426	0.410	0.376
's ratio				
Cohesi	kiloJoul	60.003	73.172	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 398.3 newtons per square metre per unit weight fraction	decreases at rate 1098.6 newtons per square metre per unit weight fraction	
Young's modulus	increases at rate 649.49 newtons per square metre per unit weight fraction	increases at rate 974.098 newtons per square metre per unit weight fraction	
Shear modulus	increases at rate 246.229 newtons per square metre per unit weight fraction	increases at rate 395.533 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0316 0 per unit weight fraction	decreases at rate 0.0685 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 26.338 kiloJoule per mole per unit weight fraction	increases at rate 72.245 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and nylon6. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and nylon66

Simron Salona Das¹, Dr Padmaja Pattanayak²

¹180705120042@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon66. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon66 on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and nylon66

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	326.725	396.911	466.509	
Density	kg per	1.078	1.079	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	6.731	104.029	1595.547
permeabili	m			
ty				
Nitrogen	Per	1.342	25.838	493.508
permeabili	m			
ty				
Carbon	Per	23.234	458.465	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 140.4 oC per unit weight	increases at rate 139.2 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.001 kg per cubic metre	increases at rate 0.001 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 194.6 Perm per unit	increases at rate 2983 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 49 Perm per unit weight	increases at rate 935.3 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 870.5 Perm per unit	increases at rate 17027.8 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and nylon66. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and nylon66

Biswaranjan Behera¹, Dr Tapan Dash²

¹190705120002@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon66. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon66 on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for				
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of		
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo		
		nate	nate	nate		
Refractive	0	1.513	1.542	1.572		
index						
Volume	Ohm-	1172075000000000.000	5677675000000000.000	32466780000000000.000		
resistivity	metre					

Table 1. Properties of composite of tetmeth_bisphen_carbonate and nylon66

Centurion Journal of Multidisciplinary Research Special issue: Nov 2020

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Dielectric	0	3.466	3.123	2.744
constant				
Coefficien	/K	294.804	246.503	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.197	0.185	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.058 0 per unit weight	increases at rate 0.059 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 9011200000000000	increases at rate 53578210000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.685 0 per unit weight	decreases at rate 0.757 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 96.6 /K per unit weight	decreases at rate 68.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.023 W/(m·K) per unit	decreases at rate 0.022 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and nylon66. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and nylon66

Damayanti Behera¹, Dr Tapan Dash²

¹190705120008@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and nylon66. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and nylon66 on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for				
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of		
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo		
		nate	nate	nate		
Bulk	newton	4541.758	4347.097	3812.095		
modulu	s per					
S	square					
	metre					

Young'	newton	2015.515	2341.591	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	706.684	830.220	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.426	0.410	0.376
's ratio				
Cohesi	kiloJoul	120.006	115.489	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction		
	of Monomer 1	of Monomer 1		
Bulk modulus	decreases at rate 389.3 newtons per square metre per unit weight fraction	decreases at rate 1070 newtons per square metre per unit weight fraction		
Young's modulus	increases at rate 652.152 newtons per increases at rate 996.262 newtons square metre per unit weight fraction square metre per unit weight fraction			
Shear modulus	increases at rate 247.072 newtons per square metre per unit weight fraction	increases at rate 403.543 newtons per square metre per unit weight fraction		
Poisson's ratio	decreases at rate 0.0316 0 per unit weight fraction	decreases at rate 0.0688 0 per unit weight fraction		
Cohesive energy (Fedors) at 298K	decreases at rate 9.034 kiloJoule per mole per unit weight fraction	decreases at rate 12.389 kiloJoule per mole per unit weight fraction		

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and nylon66. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and 25_thiazole

Rajottama Barik¹, Dr. Arun Kumar Pradhan²

¹180705100025@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and 25_thiazole. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and 25_thiazole on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and 25_thiazole

Property		Results for				
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of		
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon		
		ate	ate	ate		
Glass transition temperatur e	oC	544.571	472.868	414.398		
Density	kg per	1.508	1.321	1.174		

	cubi			
	c			
	metr			
	e			
Oxygen	Per	17.428	84.434	288.203
permeabili	m			
ty				
Nitrogen	Per	3.750	20.622	77.690
permeabili	m			
ty				
Carbon	Per	65.483	365.242	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	decreases at rate 143.4 oC per unit weight	decreases at rate 116.9 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.376 kg per cubic metre	decreases at rate 0.292 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 134 Perm per unit weight	increases at rate 407.5 Perm per unit	
	fraction	weight fraction	
Nitrogen permeability	increases at rate 33.7 Perm per unit weight	increases at rate 114.1 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 599.5 Perm per unit	increases at rate 2051.7 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and 25_thiazole. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and 25_thiazole

Truptimayee Chhotray¹, Dr Tapan Dash²

¹180705120021@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and 25_thiazole. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and 25_thiazole on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Pro	operties of	composite	of bisphen	dimeth	carbonate	and 25	thiazole
	1						

Property Results for				
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.743	1.653	1.587
index				
Volume	Ohm-	1910580000000000.000	2147911000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	3.859	3.334	2.905
constant				
Coefficien	/K	183.315	209.378	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.217	0.203	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.18 0 per unit weight	decreases at rate 0.132 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 3913706000000000	increases at rate 26707638000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.051 0 per unit weight	decreases at rate 0.858 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 52.1 /K per unit weight	increases at rate 54.9 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.027 W/(m·K) per unit	decreases at rate 0.022 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and 25_thiazole. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and 25_thiazole

Rachayita Pradhan¹, Dr. Arun Kumar Pradhan²

¹180705100026@cutm.ac.in, ²arunkumar.pradhan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and 25_thiazole. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and 25_thiazole on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1.	Properties	of composite	of bisphen	dimeth	carbonate	and 25	thiazole
	1	1					

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	6467.823	5086.531	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	3263.424	2684.191	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	1152.415	950.459	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.416	0.412	0.409
s ratio				
Cohesiv	kiloJoul	32.982	47.781	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus decreases at rate 2762.6 newtons per square metre per unit weight fraction		decreases at rate 2110.6 newtons per square metre per unit weight fraction	
Young's modulus	decreases at rate 1158.466 newtons per square metre per unit weight fraction	decreases at rate 943.66 newtons per square metre per unit weight fraction	
Shear modulus	decreases at rate 403.911 newtons per square metre per unit weight fraction	decreases at rate 330.234 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0077 0 per unit weight fraction	decreases at rate 0.007 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 29.597 kiloJoule per mole per unit weight fraction	increases at rate 90.558 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and 25_thiazole. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benz_imidazoles

Sarita Mishra¹, Mr. Chittaranjan Routray²

¹180705100087@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and benz_imidazoles. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benz_imidazoles on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benz_imidazoles

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass	oC	645.418	532.187	414.398	
transition					
temperatur					
e					
Density	kg	1.349	1.255	1.174	
	per				

	cubi			
	с			
	metr			
	e			
Oxygen	Per	46.209	125.661	288.203
permeabili	m			
ty				
Nitrogen	Per	10.752	31.688	77.690
permeabili	m			
ty				
Carbon	Per	189.415	563.220	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	decreases at rate 226.5 oC per unit weight	decreases at rate 235.6 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.186 kg per cubic metre	decreases at rate 0.162 kg per cubic met	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 158.9 Perm per unit weight fraction	increases at rate 325.1 Perm per unit weight fraction	
Nitrogen permeability	increases at rate 41.9 Perm per unit weight	increases at rate 92 Perm per unit weight	
	fraction	fraction	
Carbon dioxide	increases at rate 747.6 Perm per unit	increases at rate 1655.7 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and benz_imidazoles. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benz_imidazoles

Truptimayee Rath¹, Mr. Chittaranjan Routray²

¹180705100086@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and benz_imidazoles. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benz_imidazoles on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benz_imidazoles

Prope	Property Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.712	1.644	1.587
index				
Volume	Ohm-	4915633000000000.000	2962009000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	3.654	3.264	2.905
constant				
Coefficien	/K	156.004	187.343	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.216	0.205	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.136 0 per unit weight	decreases at rate 0.113 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 4940891400000000	increases at rate 25079442000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.78 0 per unit weight	decreases at rate 0.719 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 62.7 /K per unit weight	increases at rate 99 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.023 W/(m·K) per unit	decreases at rate 0.024 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and benz_imidazoles. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benz_imidazoles

Manas Ranjan Sahoo¹, Dr. Dojalisa Sahu²

¹180705100047@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and benz_imidazoles. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benz_imidazoles on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benz_imidazoles

Property		Results for			
Name	Unit 0.0 weight fraction of		0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	6368.798	5196.780	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	3112.864	2690.613	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	1097.208	951.615	785.343
modulu	s per			
s	square			
	metre			
Poisson'	0	0.419	0.414	0.409
s ratio				
Cohesiv	kiloJoul	47.393	61.709	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 2344 newtons per square metre per unit weight fraction	decreases at rate 2331.1 newtons per square metre per unit weight fraction	
Young's modulus	decreases at rate 844.502 newtons per square metre per unit weight fraction	decreases at rate 956.504 newtons per square metre per unit weight fraction	
Shear modulus	decreases at rate 291.186 newtons per square metre per unit weight fraction	decreases at rate 332.545 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0097 0 per unit weight fraction	decreases at rate 0.0104 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 28.633 kiloJoule per mole per unit weight fraction	increases at rate 62.701 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and benz_imidazoles. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benzimid

Rakesh Kumar Mallik¹, Dr Santosh Satapathy²

¹180705120011@cutm.ac.in, ²santosh.satpathy@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and benzimid. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzimid on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benzimid

Property		Results for			
Name	Uni	0.0 weight fraction of	0.0 weight fraction of 0.5 weight fraction of		
	t	bisphen_dimeth_carbon	bisphen dimeth carbon bisphen dimeth carbon		
		ate	ate	ate	
Glass transition temperatur e	oC	793.792	607.698	414.398	
Density	kg per	1.478	1.309	1.174	

	cubi			
	c			
	metr			
	e			
Oxygen	Per	11.843	72.273	288.203
permeabili	m			
ty				
Nitrogen	Per	2.470	17.433	77.690
permeabili	m			
ty				
Carbon	Per	42.991	308.327	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	decreases at rate 372.2 oC per unit weight	decreases at rate 386.6 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.338 kg per cubic metre	decreases at rate 0.269 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 120.9 Perm per unit	increases at rate 431.9 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 29.9 Perm per unit weight	increases at rate 120.5 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 530.7 Perm per unit	increases at rate 2165.5 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and benzimid. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benzimid

Bibhu Prasad Panda¹, Dr Padmaja Pattanayak²

¹180705120031@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and benzimid. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzimid on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. I	Properties	of compos	site of bispl	hen dimeth	carbonate and	benzimid

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.724	1.646	1.587	
index					
Volume	Ohm-	46711360000000.000	10344250000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	4.165	3.493	2.905
Coefficien	/ V	127.056	165 210	226.825
t of volumetric thermal	/K	127.930	105.210	230.835
expansion				
Thermal conductivi	W/(m∙ K)	0.230	0.211	0.193

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.156 0 per unit weight	decreases at rate 0.118 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 1975427280000000	increases at rate 28934610000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.345 0 per unit weight	decreases at rate 1.176 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 74.5 /K per unit weight	increases at rate 143.3 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.036 W/(m·K) per unit	decreases at rate 0.037 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and benzimid. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benzimid

Tophani Sahoo¹, Dr Tapan Dash²

¹180705120017@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and benzimid. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzimid on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

	Table 1. Prop	perties of	composite of	f bisphen	dimeth	carbonate and	benzimid
--	---------------	------------	--------------	-----------	--------	---------------	----------

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	7673.034	5811.118	4031.244	
modulu	s per				
S	square				
	metre				

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Young's modulu	newton s per	3659.985	2975.530	2212.361
S	square metre			
Shear modulu s	newton s per square metre	1288.273	1051.677	785.343
Poisson' s ratio	0	0.421	0.415	0.409
Cohesiv e energy (Fedors) at 298K	kiloJoul e per mole	65.471	75.967	93.060

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 3723.8 newtons per square metre per unit weight fraction	decreases at rate 3559.7 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 1368.91 newtons per square metre per unit weight fraction	decreases at rate 1526.338 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 473.192 newtons per square metre per unit weight fraction	decreases at rate 532.669 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0117 0 per unit weight fraction	decreases at rate 0.0123 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 20.992 kiloJoule per mole per unit weight fraction	increases at rate 34.186 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and benzimid. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and benzothiazol

Pranab Prayesh Rout¹, Dr Padmaja Pattanayak²

¹180705120038@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and benzothiazol. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzothiazol on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benzothiazol

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	791.880	588.714	414.398	
Density	kg per	1.639	1.368	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	9.095	69.766	288.203
permeabili	m			
ty				
Nitrogen	Per	1.857	16.781	77.690
permeabili	m			
ty				
Carbon	Per	32.247	296.695	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	decreases at rate 406.3 oC per unit weight	decreases at rate 348.6 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.541 kg per cubic metre	decreases at rate 0.388 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 121.3 Perm per unit	increases at rate 436.9 Perm per unit
	weight fraction	weight fraction
Nitrogen permeability	increases at rate 29.8 Perm per unit weight	increases at rate 121.8 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 528.9 Perm per unit	increases at rate 2188.8 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and benzothiazol. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and benzothiazol

Bikash Pradhan¹, Dr.Pratap Chhottaray²

¹180705100065@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and benzothiazol. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzothiazol on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of com	posite of bisphen d	limeth carbonate	and benzothiazol
	.pepro er ensprien e		

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.812	1.676	1.587	
index					
Volume	Ohm-	104178600000000.000	1827372000000000.000	155017300000000000.000	
resistivity	metre				

Dielectric	0	3.991	3.369	2.905
constant				
Coefficien	/K	128.253	170.267	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.214	0.202	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.272 0 per unit weight	decreases at rate 0.178 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 3446386800000000	increases at rate 27348716000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.244 0 per unit weight	decreases at rate 0.929 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 84 /K per unit weight	increases at rate 133.1 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.023 W/(m·K) per unit	decreases at rate 0.019 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and benzothiazol. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and benzothiazol

Abhishek Abhinanda Mohanty¹, Dr Padmaja Pattanayak²

¹180705120035@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and benzothiazol. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and benzothiazol on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and benzothiazol

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	8050.285	5828.530	4031.244
modulu	s per			
S	square			
	metre			

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Young's	newton	3951.617	3042.254	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	1393.191	1076.518	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.418	0.413	0.409
s ratio				
Cohesiv	kiloJoul	75.514	83.023	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 4443.5 newtons per square metre per unit weight fraction	decreases at rate 3594.6 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 1818.726 newtons per square metre per unit weight fraction	decreases at rate 1659.786 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 633.346 newtons per square metre per unit weight fraction	decreases at rate 582.351 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0104 0 per unit weight fraction	decreases at rate 0.0089 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 15.018 kiloJoule per mole per unit weight fraction	increases at rate 20.074 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and benzothiazol. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and cyclopentylm

Laxmipriya Dhal¹, Dr.Pratap Chhottaray²

¹180705100064@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and cyclopentylm on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and cyclopentylm

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	392.616	403.355	414.398	
Density	kg per	1.037	1.101	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	312.797	304.419	288.203
permeabili	m			
ty				
Nitrogen	Per	84.876	82.423	77.690
permeabili	m			
ty				
Carbon	Per	1520.871	1476.556	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 21.5 oC per unit weight	increases at rate 22.1 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.129 kg per cubic metre	increases at rate 0.146 kg per cubic metr	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	decreases at rate 16.8 Perm per unit	decreases at rate 32.4 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	decreases at rate 4.9 Perm per unit weight	decreases at rate 9.5 Perm per unit weight	
	fraction	fraction	
Carbon dioxide	decreases at rate 88.6 Perm per unit	decreases at rate 170.9 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and cyclopentylm. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and cyclopentylm

Diptimayee Rout¹, Dr Nibedita Nayak²

¹180705120054@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and cyclopentylm on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Pro	perties of c	omposite of bis	sphen dimeth	carbonate and	cyclor	oentylm
	F					

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo	
		nate	nate	nate	
Refractive	0	1.537	1.560	1.587	
index					
Volume	Ohm-	53858980000000000000000000	10926520000000000000000000	155017300000000000.000	
resistivity	metre				

Dielectric constant	0	2.134	2.481	2.905
Coefficien t of volumetric thermal expansion	/K	248.999	242.850	236.835
Thermal conductivi ty	W/(m· K)	0.176	0.185	0.193

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.046 0 per unit weight	increases at rate 0.054 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 8586492000000000000	decreases at rate 187526940000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.693 0 per unit weight	increases at rate 0.848 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 12.3 /K per unit weight	decreases at rate 12 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	increases at rate 0.016 W/(m·K) per unit	increases at rate 0.016 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and cyclopentylm. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and cyclopentylm

Prajna Paramita Samal¹, Dojalisa Sahu²

¹190705100012@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and cyclopentylm on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and cyclopentylm

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Bulk	newton	3364.420	3676.825	4031.244	
modulu	s per				
S	square				
	metre				

Young's	newton	1903.341	2051.485	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	677.002	729.024	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.406	0.407	0.409
s ratio				
Cohesiv	kiloJoul	24.373	38.886	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 624.8 newtons per square metre per unit weight fraction	increases at rate 708.8 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 296.288 newtons per square metre per unit weight fraction	increases at rate 321.752 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 104.043 newtons per square metre per unit weight fraction	increases at rate 112.637 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.0026 0 per unit weight fraction	increases at rate 0.003 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 29.025 kiloJoule per mole per unit weight fraction	increases at rate 108.348 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and cyclopentylm. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethylene_terepthalate

Jyoshnarani Samal¹, Dr. Ashish Kumar Sahoo²

¹180705100021@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene_terepthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene_terepthalate

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon	
		ate	ate	ate	
Glass transition temperatur e	oC	368.161	391.540	414.398	
Density	kg per	1.317	1.242	1.174	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	6.631	46.292	288.203
permeabili	m			
ty				
Nitrogen	Per	1.320	10.773	77.690
permeabili	m			
ty				
Carbon	Per	22.857	189.789	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 46.8 oC per unit weight	increases at rate 45.7 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.151 kg per cubic metre per unit weight fraction	decreases at rate 0.135 kg per cubic metre per unit weight fraction	
Oxygen permeability	increases at rate 79.3 Perm per unit weight fraction	increases at rate 483.8 Perm per unit weight fraction	
Nitrogen permeability	increases at rate 18.9 Perm per unit weight	increases at rate 133.8 Perm per unit	
	fraction	weight fraction	
Carbon dioxide	increases at rate 333.9 Perm per unit	increases at rate 2402.6 Perm per unit	
permeability weight fraction		weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and ethylene_terepthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethylene_terepthalate

Prajna Nibedita Subudhi¹, Dr. Srikant Sahu²

¹180705100059@cutm.ac.in, ²srikanta.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene_terepthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene_terepthalate

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.556	1.572	1.587
index				
Volume	Ohm-	27194300000000000.000	66971170000000000.000	155017300000000000.000
resistivity	metre			

Dielectric	0	3.283	3.087	2.905
constant				
Coefficien	/K	264.237	249.633	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.210	0.201	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.033 0 per unit weight	increases at rate 0.03 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 7955374000000000	increases at rate 17609226000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.391 0 per unit weight	decreases at rate 0.364 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 29.2 /K per unit weight	decreases at rate 25.6 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.017 W/(m·K) per unit	decreases at rate 0.017 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and ethylene_terepthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethylene_terepthalate

Ashrumochan Nayak¹, Mrs. Suchismita Acharya²

¹180705100094@cutm.ac.in, ²suchismita.acharya@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene_terepthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene_terepthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene_terepthalate

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	4411.336	4223.801	4031.244
modulu	s per			
S	square			
	metre			

Young's	newton	2294.199	2257.379	2212.361
modulu	s per			
S	square			
	metre			
Shear	newton	811.634	799.963	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.413	0.411	0.409
s ratio				
Cohesiv	kiloJoul	74.087	82.254	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Bulk modulus	decreases at rate 375.1 newtons per square metre per unit weight fraction	decreases at rate 385.1 newtons per square metre per unit weight fraction	
Young's modulus	decreases at rate 73.64 newtons per square metre per unit weight fraction	decreases at rate 90.036 newtons per square metre per unit weight fraction	
Shear modulus	decreases at rate 23.341 newtons per square metre per unit weight fraction	decreases at rate 29.242 newtons per square metre per unit weight fraction	
Poisson's ratio	decreases at rate 0.0048 0 per unit weight fraction	decreases at rate 0.0048 0 per unit weight fraction	
Cohesive energy (Fedors) at 298K	increases at rate 16.333 kiloJoule per mole per unit weight fraction	increases at rate 21.613 kiloJoule per mole per unit weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and ethylene_terepthalate. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and 25_thiazole

Swayam Prajna Sahoo¹, Dr. Dojalisa Sahu²

¹180705100045@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and 25_thiazole. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and 25_thiazole on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and 25_thiazole

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	544.571	501.338	466.509
Density	kg per	1.508	1.258	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	17.428	238.674	1595.547
permeabili	m			
ty				
Nitrogen	Per	3.750	63.371	493.508
permeabili	m			
ty				
Carbon	Per	65.483	1132.794	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	decreases at rate 86.5 oC per unit weight	decreases at rate 69.7 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.5 kg per cubic metre	decreases at rate 0.358 kg per cubic metre	
	per unit weight fraction per unit weight fraction		
Oxygen permeability	increases at rate 442.5 Perm per unit	increases at rate 2713.7 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 119.2 Perm per unit	increases at rate 860.3 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 2134.6 Perm per unit	increases at rate 15679.1 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and 25_thiazole. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and 25_thiazole

Khageswar Behera¹, Susant K. Biswal²

¹190705100001@cutm.ac.in, ²dr.skbiswal@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and 25_thiazole. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and 25_thiazole on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.743	1.640	1.572
index				
Volume	Ohm-	1910580000000000.000	3463033000000000.000	324667800000000000.000
resistivity	metre			

Table 1. Properties of composite of tetmeth_bisphen_carbonate and 25_thiazole

Dielectric	0	3.859	3.230	2.744
constant				
Coefficien	/K	183.315	198.190	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.217	0.193	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.205 0 per unit weight	decreases at rate 0.137 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 6543950000000000	increases at rate 58007494000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 1.258 0 per unit weight	decreases at rate 0.972 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 29.7 /K per unit weight	increases at rate 27.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.047 W/(m·K) per unit	decreases at rate 0.038 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and 25_thiazole. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and 25_thiazole

Bhagirathi Rana¹, Dr Tapan Dash²

¹180705120023@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and 25_thiazole. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and 25_thiazole on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

	Table 1. P	roperties of	composite	of tetmeth	bisphen	carbonate ar	1d 25_	thiazole
--	------------	--------------	-----------	------------	---------	--------------	--------	----------

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	6467.823	4900.931	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	3263.424	2985.880	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1152.415	1067.561	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.416	0.398	0.376
's ratio				
Cohesi	kiloJoul	32.982	49.099	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	decreases at rate 3133.8 newtons per square metre per unit weight fraction	decreases at rate 2177.7 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 555.088 newtons per square metre per unit weight fraction	decreases at rate 292.316 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 169.708 newtons per	decreases at rate 71.14 newtons per square
	square metre per unit weight fraction	metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0349 0 per unit weight	decreases at rate 0.0452 0 per unit weight
	fraction	fraction
Cohesive energy	increases at rate 32.234 kiloJoule per	increases at rate 120.39 kiloJoule per
(Fedors) at 298K	mole per unit weight fraction	mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and 25_thiazole. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth bisphen carbonate and benz imidazoles

Manorama Bastia¹, Dr. Ashish Kumar Sahoo²

¹180705100016@cutm.ac.in, ²ashish.sahoo@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and benz_imidazoles. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and benz_imidazoles on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and benz_imidazoles

Property		Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Glass transition temperatur e	oC	645.418	557.479	466.509
Density	kg per	1.349	1.199	1.080

	cubi			
	с			
	metr			
	e			
Oxygen	Per	46.209	325.493	1595.547
permeabili	m			
ty				
Nitrogen	Per	10.752	88.604	493.508
permeabili	m			
ty				
Carbon	Per	189.415	1588.233	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	decreases at rate 175.9 oC per unit weight	decreases at rate 181.9 oC per unit weight	
temperature	fraction	fraction	
Density	decreases at rate 0.299 kg per cubic metre	decreases at rate 0.239 kg per cubic metre	
	per unit weight fraction	per unit weight fraction	
Oxygen permeability	increases at rate 558.6 Perm per unit	increases at rate 2540.1 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 155.7 Perm per unit	increases at rate 809.8 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 2797.6 Perm per unit	increases at rate 14768.3 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and benz_imidazoles. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and benz_imidazoles

Sushree Subhadarshinee Mohapatra¹, Dr Padmaja Pattanayak²

¹180705120033@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and benz_imidazoles. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and benz_imidazoles on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and benz_imidazoles

Prope	erty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Refractive	0	1.712	1.632	1.572
index				
Volume	Ohm-	491563300000000.000	4613194000000000.000	324667800000000000.000
resistivity	metre			

Dielectric constant	0	3.654	3.168	2.744
Coefficien t of volumetri c thermal expansion	/K	156.004	179.297	212.051
Thermal conductivi ty	W/(m· K)	0.216	0.196	0.174

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	decreases at rate 0.159 0 per unit weight	decreases at rate 0.121 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 8243261400000000	increases at rate 55707172000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.972 0 per unit weight	decreases at rate 0.847 0 per unit weight
	fraction	fraction
Coefficient of volumetric	increases at rate 46.6 /K per unit weight	increases at rate 65.5 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.041 W/(m·K) per unit	decreases at rate 0.043 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and benz_imidazoles. Experimental study is required to validate the results.
Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and benz_imidazoles

Soumya Ranjan Sahoo¹, Dr Tapan Dash²

¹180705120016@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and benz_imidazoles. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and benz_imidazoles on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and benz_imidazoles

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Bulk	newton	6368.798	4976.199	3812.095	
modulu	s per				
S	square				
	metre				

Young'	newton	3112.864	2937.704	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	1097.208	1047.976	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.419	0.402	0.376
's ratio				
Cohesi	kiloJoul	47.393	64.246	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus decreases at rate 2785.2 new square metre per unit weight fra		decreases at rate 2328.2 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 350.32 newtons per decreases at rate 195.964 new square metre per unit weight fraction square metre per unit weight fraction	
Shear modulus	decreases at rate 98.464 newtons per square metre per unit weight fraction	decreases at rate 31.97 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0339 0 per unit weight fraction	decreases at rate 0.0515 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 33.706 kiloJoule per mole per unit weight fraction	increases at rate 90.097 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and benz_imidazoles. Experimental study is required to validate the results.

Prediction of Permeability for a composite of tetmeth_bisphen_carbonate and cyclopentylm

Sindhuraj Baral¹, Mr. Chittaranjan Routray²

¹180705100031@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of tetmeth_bisphen_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and cyclopentylm on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and cyclopentylm

Property		Results for			
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
	t	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Glass transition temperatur e	oC	392.616	429.901	466.509	
Density	kg per	1.037	1.058	1.080	

	cubi			
	с			
	metr			
	e			
Oxygen	Per	312.797	694.969	1595.547
permeabili	m			
ty				
Nitrogen	Per	84.876	201.070	493.508
permeabili	m			
ty				
Carbon	Per	1520.871	3628.635	8972.360
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction	
	of Monomer 1	of Monomer 1	
Glass transition	increases at rate 74.6 oC per unit weight	increases at rate 73.2 oC per unit weight	
temperature	fraction	fraction	
Density	increases at rate 0.042 kg per cubic metre	increases at rate 0.044 kg per cubic metre	
	per unit weight fraction per unit weight fraction		
Oxygen permeability	increases at rate 764.3 Perm per unit	increases at rate 1801.2 Perm per unit	
	weight fraction	weight fraction	
Nitrogen permeability	increases at rate 232.4 Perm per unit	increases at rate 584.9 Perm per unit	
	weight fraction	weight fraction	
Carbon dioxide	increases at rate 4215.5 Perm per unit	increases at rate 10687.5 Perm per unit	
permeability	weight fraction	weight fraction	

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of tetmeth_bisphen_carbonate and cyclopentylm. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of tetmeth_bisphen_carbonate and cyclopentylm

Saswati Behera¹, Dr Nibedita Nayak²

¹180705120050@cutm.ac.in, ²nibeditanayak@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of tetmeth_bisphen_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and cyclopentylm on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1 Dre	nortion of	omposite of	tatmath his	mhan a	orhanata and	avala	n on tryling
14010 1.110	perfies of c	omposite of	icuncui_ois	spitch_ca	al oonate and	Cyclo	pentynn

Property		Results for			
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of	
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	
		nate	nate	nate	
Refractive	0	1.537	1.554	1.572	
index					
Volume	Ohm-	5385898000000000000000000000000000000000	146531000000000000000000000000000000000000	324667800000000000.000	
resistivity	metre				

National Conference on Computational Composite: Power of Synthia 15-17 Nov 2020

Dielectric	0	2.134	2.417	2.744
constant				
Coefficien	/K	248.999	228.877	212.051
t of				
volumetri				
c thermal				
expansion				
Thermal	W/(m·	0.176	0.175	0.174
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.034 0 per unit weight	increases at rate 0.036 0 per unit weight
	fraction	fraction
Volume resistivity	decreases at rate 7841176000000000000	decreases at rate 228128440000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	increases at rate 0.565 0 per unit weight	increases at rate 0.654 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 40.2 /K per unit weight	decreases at rate 33.7 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.002 W/(m·K) per unit	decreases at rate 0.002 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of tetmeth_bisphen_carbonate and cyclopentylm. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of tetmeth_bisphen_carbonate and cyclopentylm

Pritiparnna Mohanty¹, Dojalisa Sahu²

¹19070510015@cutm.ac.in, ²dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of tetmeth_bisphen_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of tetmeth_bisphen_carbonate and cyclopentylm on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of tetmeth_bisphen_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of tetmeth_bisphen_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of tetmeth_bisphen_carbonate and cyclopentylm

Property			Results for	
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		tetmeth_bisphen_carbo	tetmeth_bisphen_carbo	tetmeth_bisphen_carbo
		nate	nate	nate
Bulk	newton	3364.420	3599.074	3812.095
modulu	s per			
S	square			
	metre			

Young'	newton	1903.341	2277.559	2839.722
S	s per			
modulu	square			
S	metre			
Shear	newton	677.002	816.604	1031.991
modulu	s per			
S	square			
	metre			
Poisson	0	0.406	0.395	0.376
's ratio				
Cohesi	kiloJoul	24.373	39.656	109.294
ve	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 469.3 newtons per square metre per unit weight fraction	increases at rate 426 newtons per square metre per unit weight fraction
Young's modulus	increases at rate 748.436 newtons per square metre per unit weight fraction	increases at rate 1124.326 newtons per square metre per unit weight fraction
Shear modulus	increases at rate 279.204 newtons per square metre per unit weight fraction	increases at rate 430.773 newtons per square metre per unit weight fraction
Poisson's ratio	decreases at rate 0.0224 0 per unit weight fraction	decreases at rate 0.0374 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 30.566 kiloJoule per mole per unit weight fraction	increases at rate 139.276 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of tetmeth_bisphen_carbonate and cyclopentylm. Experimental study is required to validate the results.

Prediction of Permeability for a composite of bisphen_dimeth_carbonate and ethylene_isophthalate

Ramesh Chandra Rana¹, Mr. Chittaranjan Routray²

¹180705100076@cutm.ac.in, ²chittaranjan@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Permeability of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Glass transition temperature, Density, Oxygen permeability, Nitrogen permeability and Carbon dioxide permeability of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene_isophthalate on the following properties have been predicted.

- a. Glass transition temperature
- b. Density
- c. Oxygen permeability
- d. Nitrogen permeability
- e. Carbon dioxide permeability

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Permeability of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene_isophthalate

Proper	ty	Results for		
Name	Uni	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
	t	bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Glass transition temperatur e	oC	325.591	370.568	414.398
Density	kg per	1.317	1.242	1.174

	cubi			
	с			
	metr			
	e			
Oxygen	Per	6.631	46.292	288.203
permeabili	m			
ty				
Nitrogen	Per	1.320	10.773	77.690
permeabili	m			
ty				
Carbon	Per	22.857	189.789	1391.085
dioxide	m			
permeabili				
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Glass transition	increases at rate 90 oC per unit weight	increases at rate 87.7 oC per unit weight
temperature	fraction	fraction
Density	decreases at rate 0.151 kg per cubic metre	decreases at rate 0.135 kg per cubic metre
	per unit weight fraction	per unit weight fraction
Oxygen permeability	increases at rate 79.3 Perm per unit weight	increases at rate 483.8 Perm per unit
	fraction	weight fraction
Nitrogen permeability	increases at rate 18.9 Perm per unit weight	increases at rate 133.8 Perm per unit
	fraction	weight fraction
Carbon dioxide	increases at rate 333.9 Perm per unit	increases at rate 2402.6 Perm per unit
permeability	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Permeability of a composite made of bisphen_dimeth_carbonate and ethylene_isophthalate. Experimental study is required to validate the results.

Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and ethylene_isophthalate

Jyotirmayee Sahu¹, Dr.Pratap Chhottaray²

¹180705100069@cutm.ac.in, ²pratap.chhotaray@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene_isophthalate on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene_isophthalate

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.556	1.572	1.587
index				
Volume	Ohm-	27194300000000000.000	66971170000000000.000	155017300000000000.000
resistivity	metre			

		-	-	-
Dielectric	0	3.283	3.087	2.905
constant				
Coefficien	/K	295.740	262.655	236.835
t of				
volumetric				
thermal				
expansion				
Thermal	W/(m·	0.210	0.201	0.193
conductivi	K)			
ty				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Refractive index	increases at rate 0.033 0 per unit weight	increases at rate 0.03 0 per unit weight
	fraction	fraction
Volume resistivity	increases at rate 7955374000000000	increases at rate 17609226000000000
	Ohm-metre per unit weight fraction	Ohm-metre per unit weight fraction
Dielectric constant	decreases at rate 0.391 0 per unit weight	decreases at rate 0.364 0 per unit weight
	fraction	fraction
Coefficient of volumetric	decreases at rate 66.2 /K per unit weight	decreases at rate 51.6 /K per unit weight
thermal expansion	fraction	fraction
Thermal conductivity	decreases at rate 0.017 W/(m·K) per unit	decreases at rate 0.017 W/(m·K) per unit
	weight fraction	weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Optical, electrical and thermal properties of a composite made of bisphen_dimeth_carbonate and ethylene_isophthalate. Experimental study is required to validate the results.

Prediction of Mechanical properties for a composite of bisphen_dimeth_carbonate and ethylene_isophthalate

Deepak Sendha¹, Dr Tapan Dash²

¹180705120025@cutm.ac.in, ²tapan.dash@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen_dimeth_carbonate and ethylene_isophthalate. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and ethylene_isophthalate on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen_dimeth_carbonate and ethylene_isophthalate

Prop	berty	Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbon	bisphen_dimeth_carbon	bisphen_dimeth_carbon
		ate	ate	ate
Bulk	newton	4022.684	4071.452	4031.244
modulu	s per			
S	square			
	metre			

Young's	newton	2275.292	2266.755	2212.361
niouulu	s per			
5	square			
	metre			
Shear	newton	809.292	805.408	785.343
modulu	s per			
S	square			
	metre			
Poisson'	0	0.406	0.407	0.409
s ratio				
Cohesiv	kiloJoul	74.087	82.254	93.060
e	e per			
energy	mole			
(Fedors				
) at				
298K				

Table 2. Rate of change of property

Property	Trend for 0.0 to 0.5 weight fraction	Trend for 0.5 to 1.0 weight fraction
	of Monomer 1	of Monomer 1
Bulk modulus	increases at rate 97.5 newtons per square metre per unit weight fraction	decreases at rate 80.4 newtons per square metre per unit weight fraction
Young's modulus	decreases at rate 17.074 newtons per square metre per unit weight fraction	decreases at rate 108.788 newtons per square metre per unit weight fraction
Shear modulus	decreases at rate 7.767 newtons per square metre per unit weight fraction	decreases at rate 40.13 newtons per square metre per unit weight fraction
Poisson's ratio	increases at rate 0.003 0 per unit weight fraction	increases at rate 0.0026 0 per unit weight fraction
Cohesive energy (Fedors) at 298K	increases at rate 16.333 kiloJoule per mole per unit weight fraction	increases at rate 21.613 kiloJoule per mole per unit weight fraction

Conclusions: The application of Synthia module of Biovia Materials Studio predicted different Mechanical properties of a composite made of bisphen_dimeth_carbonate and ethylene_isophthalate. Experimental study is required to validate the results.

Centurion Journal of Multidisciplinary Research (India)

Volume 10 Number 2 November 2020