
Page | 1

Collecting Data and Visualizing of Sensors

of an Android Device.

 A PROJECT REPORT

Submitted by

Ritwik Parija(170301150003)

Ayush Kumar (170301150022)

Ambikesh Parida(170301141021)

Hritesh Mallik(170301120070)

In partial fulfilment for the award of the degree of

BACHELOR OF TECHNOLOGY

In

CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT

(CUTM)

BHUBANESWAR, ODISHA

Page | 2

BONAFIED CERTIFICATE

Certified that this project report “Hand Written Digit Recognition Based Learning

Android Application” is the work of Ritwik Parija,Ayush Kumar,Ambikesh

Parida,Hritesh Mallik who carried out the project work under my supervision. This

is to further certify to the best of my knowledge that this project has not been carried

out earlier in this institute and the university.

Signature of External Examiner Signature of Professor

Certified that the above-mentioned project has been duly carried out as per the norms

of the college and statutes of the university.

 SIGNATURE

Mr. Harish Chandra Mohanta

 Head of Department

Electronics and Communications

Engineering

Page | 3

DECLARATION

We hereby declare that the work entitled “Collecting Data and Visualizing of

Sensors of an Android Device” submitted to “Mr. Subrat Kumar Pradhan” is a

record of an original work done by us under the guidance of “Mr. Subrat Kumar

Pradhan”, Professor from Department of Electronics & Communication

Engineering, “Centurion University of Technology and Management”.

 Place: Jatni , Khurda

Ritwik Parija(170301150003)

 Ayush Kumar (170301150022)

 Ambikesh Parida(170301141021)

 Hritesh Mallik(170301120070)

Date:

Page | 4

ACKNOWLEDGEMENT

We wish to express our profound and sincere gratitude to Mr. Subrat Kumar Pradhan,

Department of Electronics and Communication Engineering, CUTM Bhubaneswar,

who guided us into the intricacies of this project nonchalantly with matchless

magnanimity.

We thank Mrs. Swarna Prabha Jena, Dept. of Electronics and Communication

Engineering, and CIT Bhubaneswar for extending their support during course of this

investigation.

We would like to thank all our friends and especially our classmates for all the

thoughtful and mind stimulating discussions we had, which prompted us to think

beyond the obvious.

 Ritwik Parija(170301150003)

 Ayush Kumar (170301150022)

 Ambikesh Parida(170301141021)

 Hritesh Mallik(170301120070)

Page | 5

CONTENTS

Sl No. Title Page No.

1 Abstract 6

2 Introduction 7

• Proposed System 7

• Aim And Objective 7

• Features 8

3 Litreture Review 9

• Journal 2 10

4 Requirement And Details 11

• Software Requirment

• Hardware Requirment

5 Methodology 20

6 Sensor and Their Types 24

• Introduction

• Types of Sensor 24

7 Output Images and Analysis 50

8 Conclusion 69

8 References 70

Page | 6

•
Abstract

Now a days, smartphones integrate high quality sensors and communication

systems, easily managed by simple APPs under Android. On the contrary,

managing remote sensors requires a big effort in programming, both on the sensor

and on the Smartphone side. In this work, a solution for filling this gap is

proposed, providing the instruments to easily handle remote sensors, exactly as if

they were embedded in Android environment

Page | 7

•

CHAPTER 1

INTRODUCTION

When starting any IoT project, the most important materials needed for data collection are sensors.

However, buying each individual sensor and finding places to store them can become a hassle,

especially as you start making more and more projects. Luckily, there are at least ten high-tech

sensors in a device that we use almost everyday: our smart phones. From accelerometers, gyroscopes,

pressure and light sensors, to GPS, these devices can be utilized to gather the necessary data to start

numerous IoT projects.Now a days, smartphones integrate high quality sensors and communication

systems, easily managed by simple APPs under Android. On the contrary, managing remote sensors

requires a big effort in programming, both on the sensor and on the Smartphone side. In this work, a

solution for filling this gap is proposed, providing the instruments to easily handle remote sensors,

exactly as if they were embedded in Android environment..

1.1. Proposed System:

One of the best and easiest ways to collect, visualize, and analyze that smart phone data is

with uBeac. uBeac is a versatile IoT platform for centralized digital transformation, data integration,

and visualization. uBeac’s IoT hub allows you to connect, process, and visualize real-time data in a

secure way. In conjunction with the Data Collector app, you will be working on your IoT projects in

no time.There are at least ten high-tech sensors in a device that we use almost everyday: our smart

phones. From accelerometers, gyroscopes, pressure and light sensors, to GPS, these devices can be

utilized to gather the necessary data to start numerous IoT projects. Take advantage of the sensors in

your Android device and visualize the data in an IoT dashboard from uBeac

1.2. Aim and Objectives:

Starting any IoT project, the most important materials needed for data collection are sensors.

However, buying each individual sensor and finding places to store When them can become a hassle,

especially as you start making more and more projects. Luckily, there are at least ten high-tech

sensors in a device that we use almost everyday: our smart phones. From accelerometers, gyroscopes,

pressure and light sensors, to GPS, these devices can be utilized to gather the necessary data to start

numerous IoT projects

https://www.ubeac.io/?utm_source=hackster.io&utm_medium=referral&utm_campaign=Personal
https://www.ubeac.io/?utm_source=hackster.io&utm_medium=referral&utm_campaign=Personal
https://www.ubeac.io/?utm_source=hackster.io&utm_medium=referral&utm_campaign=Personal
https://www.ubeac.io/?utm_source=hackster.io&utm_medium=referral&utm_campaign=Personal

Page | 8

1.3. Features:

 Smartphone sensor data provides organizations with a chance to learn about their employees' work

patterns and behavior. IT could apply this data to the user authorization process to more accurately

identify the users logging in to the device.

Organizations can also use sensor data to perform sentiment analysis to determine how satisfied

employees are with their jobs. IT can set up this data collection to avoid tracking users individually

and instead aggregate the data for AI analysis.

This data can help management understand group morale of their mobile users and what sort of

events might cause stress. For example, sensor data could monitor employee engagement and

attitudes after management introduces new technologies, modifies existing workflows or makes other

organizational changes.

Organizations can use the data to streamline day-to-day operations as well. Organizations can

analyze how employees move through their environments and interact with each other on a day-to-

day basis, for example. The organization could then adjust its floor plans and workflows to optimize

efficiency and productivity. This approach can also help organizations address accessibility issues

for employees with disabilities.

•

•

Page | 9

CHAPTER 2

LITRETURE REVIEW

Serial

Number

Title Of the

Paper

Author &

Publisher

Problem

Statement

Methodology Outcomes

1 Integrating

remote

sensors in a

smartphone:

The project

"sensors for

ANDROID

in

embedded

systems"

1.Stefano Rinaldi

2.Alessandro

Depari

3.Alessandra

Flammini

4.Angelo Vezzoli

Published by-

(Department of

Information

Engineering,

University of

Brescia,April

2016)

To find out

the accurate

Data from a

android

Device and

analysis the

data.

They used

the sensors

that are

attached to

an android

device and

connected to

a physical

alarm

system

through

Bluetooth

To create

the

network

between

sensor

devices

and smart

device

Page | 10

Serial

Number

Title Of the

Paper

Author &

Publisher

Problem

Statement

Methodology Outcomes

1 Integration

of Sensors

and Mobile

Phones

1- Awais

Munwar

Quareshi

2- Amar

Maseed

Publisher-

National

University of

Technology

2018

Propose of an

Open source

Platform

based on

open system

Architecture

Design for

the

integration of

mobile

phones and

sensors

Using

Software

tools

1-Ni Labview

2-Carbide

C/C++

3-Symbian

SDK

4-Sybian C++

Got the

Sensor data

Page | 11

CHAPTER 3

REQUIREMENT AND DETAILS

3.1. Software Requirement:

 3.1.1 uBeac IOT Platform:

 uBeac is a versatile IoT platform for centralized digital transformation, data integration, and

 visualization. uBeac’s IoT hub allows you to connect, process, and visualize real-time data in

 a secure way. Build an enterprise IoT solution that securely scales to millions of devices.

3.1.1 Features:

A. 3.1.1. Cloud Platform:

i. Uses our freeware hosted cloud-based service, focus on your IoT

solution.

ii. UBeac contains high availability, reliability, scalability, and security.

iii. Connects our gateways and devices with defined URIs, IPs, certificates,

custom headers, and usernames/passwords.

 3.1.1 Integration:

i. Combine your data flow with external services using custom scripts and

powerful API.

ii. Route device data back to existing services such as AWS, IBM, or

Microsoft Power BI.

iii. Integrate with external messaging services such as IFTTT, Twilio,

WhatsApp, Telegram, SMS, and Email to enable alerts and triggers.

Page | 12

3.1.1 Data Insights:

i. Utilize charts, indicators, gauges, maps, and graphs for seamless visualizations

and create dashboards using these widgets to deliver insights.

ii. Real-time and historical time-series IoT data are available for dynamic

analytics.

3.1.1 Supported Devices:

i. Connects to ESP32, ESP8266, Arduino, Raspberry Pi, smart phones, and other

industrial IoT Devices.

ii. Processes gateway data and extract sensor data using edge computing.

3.1.1 Sensors Types:

i. Support location (GPS), temperature, humidity, acceleration, rotational

motion, current, voltage, magnetic field, pressure, and illuminance.

ii. You can define your own sensor type and unit.

3.1.1 Connectivity:

i. Connect to any device over Wi-Fi, LoRa, GPRS, LTE, NB-IoT, BLE, Zigbee,

Thread, and Z-Wave.

ii. The platform supports HTTP, WebSocket, MQTT, and CoAP messaging

protocols to connect devices.

Page | 13

3.1.2 Data Collector App

Android-based application that helps to collect data from many sensors and send it in JSON

format to unlimited number of servers using HTTP, HTTPS, Web Socket, Web Socket Secure

protocols with specified sample interval or at time periods.

3.1.2 Features:

i. The Application design is responsive both for small smartphone screens and

big tablet screens.

ii. The Application interface is understandable and succinct, that allows to focus

on data received from Bluetooth devices.

iii. All operations start after one or two clicks. No need to do multiple click to

start operation.

iv. You are provided with a full control over data collection and transfer, you can

set any interaction parameter based on your needs.

v. It has comparatively small size, that allows you to install and run it on devices

with different capability.

vi. It is supported by Android 4.3 and later devices.

vii. It also contains four Modules

• Sensors

• Servers

• Task

• Settings

Page | 14

3.1.3 Sensors:

 An access to all modules is available through Menu icon in upper-left corner of the

App. The screen of Sensors, Servers, Tasks, Settings modules are arranged in the same way

as the lists of module elements and with Add button, which is used for new elements adding.

Pressing Sensors list element opens a screen for review and editing this module as well as

opens dialog windows for editing and deleting elements in Server and Tasks modules.An

access to all modules is available through icon in upper-left corner of the App. The screen of

Sensors, Servers, Tasks, Settings modules are arranged in the same way as the lists of module

elements and with button, which is used for new elements adding. Pressing Sensors list

element opens a screen for review and editing this module as well as opens dialog windows

for editing and deleting elements in Server and Tasks modules.

3.1.4 Sensors Module:

 Initially the list of this module contains internal sensors, which are detected by Data

Collector at mobile device. Upon choosing such sensor at the screen, a screen will appear

where a new sensor name can be assigned or sensor can be switched on/off. For all hardware

sensors current values and their plots are indicated, except location sensor, for which a map

with current position data is shown. Using a Time/Division slider bar you can specify time

sweep for a plot. GPS, network, passive provider data source can be assigned for location

sensor.

Adding of guest sensors is initiated by pressing Add button, which activates dialog window.

In this dialog window sensor type and name are supposed to be indicated. Upon saving the

sensor, it will appear in the list of elements of Sensors module. Pressing such element will

open a screen where a new name of the sensor can be assigned or the sensor can be switched

on/off as well as required values of the sensor can be assigned. In the top left corner of guest

sensors there is a menu with Clear Sensor, Delete Sensor, Settings commands. In Settings

setting of current sensor data mode is available (updating of sensor value in tasks):

Manually (data is updated upon pressing Send button).Upon changes (data is updated upon

any change of sensor value).Periodic (data is updated in assigned period in seconds. Period

can be assigned in the text field below)

In the current version the following guest sensors are performed:

Text Sensor, that transfers any text Mosaic Sensor presents arbitrary size-matrix, where you

can assign any color to any cell. On sensor's screen the matrix size and current color for cells

filling can be assign. Matrix scale is manually changeable and scrollable. To fill the cell with

a color, make a single click on it. Double click will clear it. For continual cells filling first

make a long press on a start cell, and then move your finger on filled cells.

XY sensor, that transfers the value of the assigned Y(X) function. X value interval and Y(X)

function formula are to be assigned by user. X value is changeable in tree ways: entering the

Page | 15

number, decreasing or increasing the current X value for a set step, using cyclic slider bar. In

Y(X) function formula the following can be used: operators, constants and functions

described here.

3.1.5 Servers Module:

 In this module servers are assigned, which will be used in task settings for

sensors data transmittance. Servers number is unlimited. Each list element includes the

following: server name, URL to send sensors data through, server connection status, as

well as WS protocols for Web Socket and Web Socket Secure servers. Connection

status is updated upon each attempt of data transmittance. If server is switched off in

Settings, the status will be "disable". Before the first attempt of data sending the status

of server will be indicated as "unknow".

New server adding will be available after pressing Add button, that opens dialog

window for entering server parameters. In this window the following can be indicated:

the name and URL of the server, login and password is authorization is required, set/

reset of "Enable" flag, as well as WS protocols separated by commas for Web Socket

and Web Socket Secure.

The following URL scheme is applied <protocol>://<host>[:<port>][</script>], where

<protocol> - http, https, ws, wss,

<host> - IP address or domain name of the server,

<port> - the number of TCP port, which listens the server for request receipt,

</script> - server program, that processes data from sensors.

Parameters enclosed in square brackets are optional.

Pressing list element in this module opens the same dialog window as at new server

adding, where any above mentioned server parameter can be changed as well as server

deleted by pressing "Delete" button.

Servers with set "Enable" flags and correct URLs are used in tasks. If servers status is

"unknow" for a long time, then first check these two parameters correctness.

Page | 16

• Task Module:

In Data Collector two types of tasks are presented - a simple task, that sends

data in assigned period in milliseconds, and a task, that send data in timepoints,

assigned in cron-format. All data are sent in JSON format.

Each list element of this module included the following:

• Task name.

• The list of sensors, the data of which is sent to server.

• The name of the server, the data is sent for.

• Task execution status (running, disable, invalid cron-pattern).

• Schedule parameters. Simple schedule requires indication of sampling period

from 1 to 60000 ms. For cron-format schedule a cron-sample shall be assigned,

for example */1 * * * *, number of samples and sampling period in ms.

 New task adding is will be available upon pressing Add button, which opens dialog

window for task parameters entering. Task name, flag set/ reset are to be indicated in

this window. In Sensors list required sensors can be indicated. The server to which

data is to be sent can be chosen from Server list. If a simple schedule is chosen in this

window, sampling period from 1 to 60000 ms is to be assigned. If a cron-format

schedule is chosen, then a correct cron-pattern, samples number and sampling period

shall be assigned. In the letter case the task will run at the moments indicated in the

pattern and make indicated number of samples with assigned sampling period for each

sensor. If Enable flag is set and Save button is pressed, then the task will run

immediately.

Pressing the list element in this module will open the same dialog window as at task

adding, where any above mentioned task parameter can be changed as well as task can

be deleted by pressing Delete button. If Enable flag was reset and Save button pressed

or a task was deleted, then the task immediately would stop execution.

Page | 17

• Setting Module:

In Settings a general parameters are indicated, such as:

Servers timeout from 1 to 5 sec., after which server will be considered

unavailable.

Data format, where in dialog window you may indicate whether to switch or

not to switch UUID transmittance of mobile device, task name, sensors names,

units of measurement of sensors data.

Background Service flag. If the flag is set, then tasks will continue to run even

after Data Collector closure.

Home screen enables to set chosen module running upon application start.

Screen orientation (automatic, portrait, landscape) enables to set screen

behavior during mobile device orientation change.

UUID assigns a unique identifier of mobile device by which it's data packages

can be identified from other mobile devices, if they all send data to the same.

Page | 18

3.2. Hardware Requirement:

3.2.1 An Android device

An Android device is a device that runs on the Android operating system. Android is an array

of software intended for mobile devices that features an operating system, core applications and

middleware.

An Android device may be a smartphone, tablet PC, e-book reader or any type of mobile

device that requires an OS.

Android is developed by the Open Handset Alliance, which is led by Google. Some of the well-

known Android device manufacturers include Acer, HTC, Samsung, LG, Sony Ericsson and

Motorola.

3.2.2 Features:

i. Messaging- SMS and MMS are available forms of messaging, including

threaded text messaging and Android Cloud To Device Messaging (C2DM)

and now enhanced version of C2DM, Android Google Cloud Messaging

(GCM) is also a part of Android Push Messaging services.

ii. Auto Correction and Dictionary-Android Operating System has an

interesting feature called Auto Correction. When any word is misspelled, then

Android recommends the meaningful and correct words matching the words

that are available in Dictionary.

iii. Web browser-The web browser available in Android is based on the open-

source Blink (previously WebKit) layout engine, coupled with Chromium's V8

JavaScript engine. Then the WebKit-using Android Browser scored 100/100

on the Acid3 test on Android 4.0 ICS; the Blink-based browser currently has

better standards support. Google has begun licensing Google Chrome (a

proprietary software) separately from Android.

iv. Voice-based features- Google search through voice has been available since

initial release.[5] Voice actions for calling, texting, navigation, etc. are

supported on Android 2.2 onwards, Android 4.1, Google has expanded Voice

Actions with ability to talk back and read answers from Google's Knowledge

Graph when queried with specific commands.

Page | 19

v. Multi-touch- Android has native support for multi-touch which was initially

made available in handsets such as the HTC Hero. The feature was originally

disabled at the kernel level Google has since released an update for the Nexus

One and the Motorola Droid which enables multi-touch natively.

vi. Multitasking- Multitasking of applications, with unique handling of memory

allocation.

vii. Multiple language support-Android supports multiple languages.

viii. Accessibility-Built-in text-to-speech is provided by TalkBack for people with

low or no vision. Enhancements for people with hearing difficulties are

available, as are other aids.

3.2.3 Connectivity-

i. Android supports connectivity Technologies including GSM/EDGE,

Bluetooth,LTE,CDMA,EV,DP,UMTS,NFC,IDEN and WiMAX.

ii. Android supports tethering, which allows a phone to be used as a

wireless/wired Wi-Fi hotspot. Before Android 2.2, this was supported by third-

party applications or manufacturer customizations.

 3.2.4 Hardware support-

I. Android devices can include still/video

cameras, touchscreens, GPS, accelerometers, gyroscopes, barometers, magneto

meters, dedicated gaming controls, proximity and pressure

sensors, thermometers, accelerated 2D bit blits (with hardware orientation,

scaling, pixel format conversion) and accelerated 3D graphics.

Page | 20

Chapter 4

Methodology

Fig.4.3 (Block Diagram of connecting To Ubeac)

Page | 21

4.1. Software Installation Process:

4.1.2 Signing up with Ubeac:

i. Signing up with uBeac is easy. You just need to add your email and create

a password to get started.

ii. You must create a team. Involving just a name for the team, a code name,

and an address.

iii. Once you have finished this, you will arrive at a blank homepage for your

team.

iv. We need to create a gateway to connect all of your devices. From

the ubeac homepage.

v. We need to create a gateway to connect all of your devices. From

the ubeac homepage.

vi. Homepage,click on the Gateways module and add a new gateway. Under

the General tab, create a UID and name for your gateway.

vii. Under the HTTP tab, there will be two gateway URLs: one HTTP and

one HTTPS. These will be used to connect to your phone. Click submit to

add the gateway.

viii. This type of blank page you will find after you click submit button.

Page | 22

4.2.1. Install DATA Collector app:

i. First go to your Android Device and install Data Collector App.

ii. After installation Open the app

iii. After opening the app you will find Four module in the app at left corner

iv. The Sensors module displays a list of all sensors connected to the device.

Clicking on each sensor will display the current data that is being read from that

specific sensor.

v. The Servers module allows the user to add an unlimited number of servers to read

the sensor data.

vi. The Tasks module lets users assign what, where, when and how data will be sent

from the Android device to the servers.

4.2.2 Connecting DATA collector to Ubeac

i. On the Data Collector app, select the Servers module and add a new server.

ii. Provide a name for this server and add one of the Gateway URLs.

iii. We created a task to send to the server.

iv. The Tasks module and add a new task.

v. Then choose the sensors that will be used from your phone.

vi. Select all the sensors.

vii. Then choose the sensors that will be used from your phone.

viii. Select the server you had just created, and add a sampling time for how often

you want Data Collector to send data to uBeac.

ix. Finally, in Settings, select Data Format and select all options

except Strict JSON

Page | 23

4.2.3 Debugging:

i. Select the Gateways module to see that a device has been added to the gateway.

ii. If you click your gateway, you can see all the HTTP POST requests.

iii. If you select the Devices module and click on the newly added device, which is the

Android device, you can find all the data that each sensor is sending to uBeac

4.2.4 Creating a dashboard

i. You can select widgets such as indicators, charts, and device tracker to help you

visualize your data.

ii. you would first drag and drop the indicator widget onto the dashboard. Next, you

would click the “connect to data” button to edit the widget's settings.

iii. Once you are satisfied with your widget, save your progress. You can continue doing

this for as many widgets as you would like.

.

Page | 24

Chapter 5

Sensor and their Types

5.3.1 Introduction:

A sensor is a component used in mobile devices, the purpose of which is to detect changes in

the environment (such as changes in brightness, magnetic fields, temperature, and gravity)

and movement (such as the device being moved, flipped, or picked up), and convert them into

electronic signals that can be processed by the device.

5.3.2 Types of Sensors:

i. Location Sensors

• Wifi

• Cell-ID

• GPS

ii. Position Sensors

• Orientation Sensor

• Proximity Sensor

iii. Motion Sensors

• Accelerometer

• Gyroscope

iv. Environmental Sensors

• Ambient Temperature

• Ambient Light

• Atmospheric Pressure

• Realtive Humidity

• Magnetic Field

• Miscellaneous Sensors

Page | 25

5.3.3 Location sensors:

 IC Name:{ 292CAEM27704X2}

 Image of a Location Sensor

The LocationSensor is used to communicate with the global positioning satellite receiver

(GPS) in your phone/tablet. When the LocationSensor communicates with the built-in GPS

receiver, the GPS determines the location of your device. The sensor can also work with

network/wifi location services. Finding a location through the network uses very different

techniques than with a GPS. Location means the device's present latitude and longitude, or it

can mean your street address. The measuring units employed in the LocationSensor for

distance are meters.

When the sensor reports distance information or you set a distance into the component, the

units are in meters. If your app must deal in English units, use the Math blocks to convert

units at the time you display them. Calculate everything in meters, then convert to report the

result in feet or miles on your display.

A nautical mile is the distance subtended by a minute of angle (1/60 of a degree) across the

earth's radius. This means that the distance between a degree of latitude and the next whole

degree is sixty nautical miles. A degree of longitude is sixty nautical miles at the equator, but

the separation between adjacent whole degrees of longitude diminishes as you change latitude

toward the poles. The spacings between degrees of latitude are constant; the spacing between

degrees of longitude are variable.

Page | 26

5.3.3 Wireless Sensor Network:

 A Wireless sensor network can be defined as a network of devices that can communicate

the information gathered from a monitored field through wireless links. The data is

forwarded through multiple nodes, and with a gateway, the data is connected to other

networks like wireless Ethernet.

WSN is a wireless network that consists of base stations and numbers of nodes (wireless

sensors). These networks are used to monitor physical or environmental conditions like

sound, pressure, temperature, and co-operatively pass data through the network to the main

location.

5.3.3.1 Star Topologies

Star topology is a communication topology, where each node connects directly to

a gateway. A single gateway can send or receive a message to several remote

nodes. Instar topologies, the nodes are not permitted to send messages to each

other. This allows low-latency communications between the remote node and the

gateway (base station).

5.3.3.2 Mesh Topologies

The Mesh topologies allow transmission of data from one node to another, which

is within its radio transmission range. If a node wants to send a message to another

node, which is out of the radio communication range, it needs an intermediate

node to forward the message to the desired node. The advantage of this mesh

topology includes easy isolation and detection of faults in the network. The

disadvantage is that the network is large and requires huge investment.

5.3.3.3 Tree Toplogies

Tree topology is also called as a cascaded star topology. In tree topologies, each

node connects to a node that is placed higher in the tree, and then to the gateway.

The main advantage of the tree topology is that the expansion of a network can be

easily possible, and also error detection becomes easy. The disadvantage with this

network is that it relies heavily on the bus cable; if it breaks, all the network will

collapse.

Page | 27

5.3.4 GPS(Global Positioning System)

GPS receivers are generally used in smartphones, fleet management system, military

etc. for tracking or finding location. Global Positioning System (GPS) is a satellite-

based system that uses satellites and ground stations to measure and compute its

position on Earth. GPS is also known as Navigation System with Time and Ranging

(NAVSTAR) GPS. GPS receiver needs to receive data from at least 4 satellites for

accuracy purpose. GPS receiver does not transmit any information to the satellites.

This GPS receiver is used in many applications like smartphones, Cabs, Fleet

management etc. A GPS receiver has to have a clear line of sight to the satellite to

operate, so dense tree cover and buildings can keep it from getting a fix on your

location.GPS receivers and cell phones have a lot in common, and both are very

popular. In the next section, we'll look at some of the features of GPS-enabled cell

phones A GPS receiver has to have a clear line of sight to the satellite to operate, so

dense tree cover and buildings can keep it from getting a fix on your location.

GPS receivers and cell phones have a lot in common, and both are very popular. In the

next section, we'll look at some of the features of GPS-enabled cell phones However,

some phones have a complete GPS receiver located in the phone or can connect to one

with wires or through a Bluetooth connection. These GPS-enabled phones can

understand programming languages like Java and can provide turn-by-turn directions

or information about nearby businesses and attractions. Others can work like a

tracking device.

Page | 28

5.3.4.1.1 How GPS Works

GPS receiver uses a constellation of satellites and ground stations to

calculate accurate location wherever it is located.

These GPS satellites transmit information signal over radio frequency (1.1

to 1.5 GHz) to the receiver. With the help of this received information, a

ground station or GPS module can compute its position and time.

GPS receiver receives information signals from GPS satellites and

calculates its distance from satellites. This is done by measuring the time

required for the signal to travel from satellite to the receiver.

Where,

Speed = Speed of Radio signal which is approximately equal to the speed

of light i.e.3*10^{8}

Time = Time required for a signal to travel from the satellite to the

receiver.

By subtracting the sent time from the received time, we can determine the

travel time.

To determine distance, both the satellite and GPS receiver generate the

same pseudocode signal at the same time.

The satellite transmits the pseudocode; which is received by the GPS

receiver.

These two signals are compared and the difference between the signals is

the travel time.

Now, if the receiver knows the distance from 3 or more satellites and their

location (which is sent by the satellites), then it can calculate its location

by using Trilateration method.

Page | 29

5.3.5 Position Sensors

Position Sensors/Detectors/Transducers are electronic devices used to sense the

positions of valves, doors, throttles, etc. and supply signals to the inputs of control or

display devices. Key specifications include sensor type, sensor function, measurement

range, and features that are specific to the sensor type. Position sensors are used

wherever positional information is needed in a myriad of control applications. A

common position transducer is a so-called string-pot, or string potentiometer.

5.3.5.1.1 Types of Postion Sensors:

• Proximity Sensors

• Orientation Sensors

i. Proximity Sensors:

Reporting-mode: On-change

Usually defined as a wake-up sensor

GetDefaultSensor(SENSOR_TYPE_PROXIMITY) returns a wake-

up sensor

A proximity sensor reports the distance from the sensor to the

closest visible surface.Up to Android 4.4, the proximity sensors

were always wake-up sensors, waking up the SoC when detecting a

change in proximity. After Android 4.4, we advise to implement

the wake-up version of this sensor first, as it's the one that is used

to turn the screen on and off while making phone calls.The

measurement is reported in centimeters

A proximity sensor often emits an electromagnetic field or a beam

of electromagnetic radiation (infrared, for instance), and looks for

changes in the field or return signal. The object being sensed is

often referred to as the proximity sensor's target. Different

proximity sensor targets demand different sensors. For example, a

capacitive proximity sensor or photoelectric sensor might be

suitable for a plastic target; an inductive proximity sensor always

requires a metal target.Proximity sensors can have a high reliability

and long functional life because of the absence of mechanical parts

and lack of physical contact between the sensor and the sensed

object.

Proximity sensors are also used in machine vibration monitoring to

measure the variation in distance between a shaft and its support

bearing. This is common in large steam turbines, compressors, and

motors that use sleeve-type bearings.A proximity sensor adjusted to

a very short range is often used as a touch switch.

Page | 30

ii. Orientation Sensor:

An orientation sensor reports the attitude of the device. The

measurements are reported in degrees in the x, y, and z fields.

the roll angle is positive in the clockwise direction.

(Mathematically speaking, it should be positive in the counter-

clockwise direction).

This definition is different from yaw, pitch, and roll used in

aviation where the X axis is along the long side of the plane (tail to

nose). The orientation sensor derives its data by processing the raw

sensor data from the accelerometer and the geomagnetic field

sensor. Because of the heavy processing that is involved, the

accuracy and precision of the orientation sensor is diminished.

Specifically, this sensor is reliable only when the roll angle is 0. As

a result, the orientation sensor was deprecated in Android 2.2 (API

level 8), and the orientation sensor type was deprecated in Android

4.4W (API level 20). Instead of using raw data from the orientation

sensor,

• Azimuth (degrees of rotation about the -z axis). This is

the angle between the device's current compass direction

and magnetic north. If the top edge of the device faces

magnetic north, the azimuth is 0 degrees; if the top edge

faces south, the azimuth is 180 degrees. Similarly, if the top

edge faces east, the azimuth is 90 degrees, and if the top

edge faces west, the azimuth is 270 degrees.

• Pitch (degrees of rotation about the x axis). This is the

angle between a plane parallel to the device's screen and a

plane parallel to the ground. If you hold the device parallel

to the ground with the bottom edge closest to you and tilt

the top edge of the device toward the ground, the pitch

angle becomes positive. Tilting in the opposite direction—

moving the top edge of the device away from the ground—

causes the pitch angle to become negative. The range of

values is -180 degrees to 180 degrees.

• Roll (degrees of rotation about the y axis). This is the

angle between a plane perpendicular to the device's screen

and a plane perpendicular to the ground. If you hold the

device parallel to the ground with the bottom edge closest to

you and tilt the left edge of the device toward the ground,

the roll angle becomes positive. Tilting in the opposite

direction—moving the right edge of the device toward the

ground— causes the roll angle to become negative. The

range of values is -90 degrees to 90 degrees.

Page | 31

5.3.6 Motion Sensors:

The Android platform provides several sensors that let you monitor the motion of a device.

The gravity, linear acceleration, rotation vector, significant motion, step counter, and step

detector sensors are either hardware-based or software-based.

The accelerometer and gyroscope sensors are always hardware-based. Most Android-powered

devices have an accelerometer, and many now include a gyroscope. The availability of the

software-based sensors is more variable because they often rely on one or more hardware

sensors to derive their data. Depending on the device, these software-based sensors can derive

their data either from the accelerometer and magnetometer or from the gyroscope.

Motion sensors are useful for monitoring device movement, such as tilt, shake, rotation, or

swing. The movement is usually a reflection of direct user input (for example, a user steering

a car in a game or a user controlling a ball in a game), but it can also be a reflection of the

physical environment in which the device is sitting (for example, moving with you while you

drive your car). In the first case, you are monitoring motion relative to the device's frame of

reference or your application's frame of reference; in the second case you are monitoring

motion relative to the world's frame of reference. Motion sensors by themselves are not

typically used to monitor device position, but they can be used with other sensors, such as the

geomagnetic field sensor, to determine a device's position relative to the world's frame of

reference.

All of the motion sensors return multi-dimensional arrays of sensor values for each

SensorEvent. For example, during a single sensor event the accelerometer returns acceleration

force data for the three coordinate axes, and the gyroscope returns rate of rotation data for the

three coordinate axes. These data values are returned in a float array (values) along with other

SensorEvent parameters.

The rotation vector sensor and the gravity sensor are the most frequently used sensors for

motion detection and monitoring. The rotational vector sensor is particularly versatile and can

be used for a wide range of motion-related tasks, such as detecting gestures, monitoring

angular change, and monitoring relative orientation changes. For example, the rotational

vector sensor is ideal if you are developing a game, an augmented reality application, a 2-

dimensional or 3-dimensional compass, or a camera stabilization app. In most cases, using

these sensors is a better choice than using the accelerometer and geomagnetic field sensor or

the orientation sensor.

Page | 32

5.3.7 Accelerometer:

An accelerometer sensor reports the acceleration of the device along the three sensor

axes. The measured acceleration includes both the physical acceleration (change of

velocity) and the gravity. The measurement is reported in the x, y, and z fields of

sensors_event_t.acceleration.

All values are in SI units (m/s^2) and measure the acceleration of the device minus the

force of gravity along the three sensor axes.

The bias and scale calibration must only be updated while the sensor is deactivated, so as to

avoid causing jumps in values during streaming.

The accelerometer also reports how accurate it expects its readings to be

through sensors_event_t.acceleration.status. See

the SensorManager’s SENSOR_STATUS_* constants for more information on possible

values for this field.

Accelerometers have many uses in industry and science. Highly sensitive accelerometers are

used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is

monitored by accelerometers. They are used in tablet computers and digital cameras so that

images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers

help to stabilise flight.

When two or more accelerometers are coordinated with one another, they can measure

differences in proper acceleration, particularly gravity, over their separation in space—that is,

the gradient of the gravitational field. Gravity gradiometry is useful because absolute gravity

is a weak effect and depends on the local density of the Earth, which is quite variable.

Single- and multi-axis accelerometers can detect both the magnitude and the direction of the

proper acceleration, as a vector quantity, and can be used to sense orientation (because the

direction of weight changes), coordinate acceleration, vibration, shock, and falling in a

resistive medium (a case in which the proper acceleration changes, increasing from zero).

Micromachined microelectromechanical systems (MEMS) accelerometers are increasingly

present in portable electronic devices and video-game controllers, to detect changes in the

positions of these devices.

An accelerometer at rest relative to the Earth's surface will indicate approximately 1

g upwards because the Earth's surface exerts a normal force upwards relative to the local

inertial frame (the frame of a freely falling object near the surface). To obtain the acceleration

due to motion with respect to the Earth, this "gravity offset" must be subtracted and

corrections made for effects caused by the Earth's rotation relative to the inertial frame.

Some smartphones, digital audio players and personal digital assistants contain accelerometers

for user interface control; often the accelerometer is used to present landscape or portrait

views of the device's screen, based on the way the device is being held.

https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorManager#SENSOR_STATUS_ACCURACY_HIGH
https://en.wikipedia.org/wiki/Inertial_navigation_system
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicles
https://en.wikipedia.org/wiki/Gravitational_field
https://en.wikipedia.org/wiki/Gravity_gradiometry
https://en.wikipedia.org/wiki/Euclidean_vector
https://en.wikipedia.org/wiki/Shock_indicator
https://en.wikipedia.org/wiki/Microelectromechanical_systems
https://en.wikipedia.org/wiki/Positional_tracking
https://en.wikipedia.org/wiki/Positional_tracking
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Personal_digital_assistant
https://en.wikipedia.org/wiki/Page_orientation
https://en.wikipedia.org/wiki/Page_orientation

Page | 33

5.3.8 Gyroscope:

A gyroscope sensor reports the rate of rotation of the device around the three sensor axes.

Rotation is positive in the counterclockwise direction (right-hand rule). That is, an observer

looking from some positive location on the x, y, or z axis at a device positioned on the origin

would report positive rotation if the device appeared to be rotating counter clockwise. Note

that this is the standard mathematical definition of positive rotation and does not agree with

the aerospace definition of roll.

The readings are calibrated using:

• Temperature compensation

• Factory (or online) scale compensation

• Online bias calibration (to remove drift)

The gyroscope can't be emulated based on magnetometers and accelerometers, as this

would cause it to have reduced local consistency and responsiveness. It must be based

on a usual gyroscope chip.

The measurement is reported in the x, y, and z fields of sensors_event_t.gyro and all values

are in radians per second (rad/s).

A Gyroscope can be understood as a device that is used to maintain a reference direction or

provide stability in navigation, stabilizers, etc. Similarly, a gyroscope or a Gyro sensor is

present in your smartphone to sense angular rotational velocity and acceleration.

A Gyro sensor in your phone provides the ability to answer your phone, or open a website by

present commands such as rotating, gently shaking the phone 2 to 3 times, etc.

Implementations of Gyroscope Sensor in a Mobile App.

• As discussed earlier, a Gyroscope Sensor can enable a number of actions to take place

basis different set of motions done by a user, such as shaking the phone to undo

written content.

• Gyroscope sensor is responsible for the autorotation of the screen and view on the

screen whenever a phone is rotated.

• One of the biggest implementations of a Gyroscope is that it enables smooth rotations

and execution of multiple commands in games by 3D motions.

• Gyroscope is capable of providing precision motion inside the App functionality. This

allows the user to execute majority of the tasks with the motion of the device itself.

• Gyroscope captures a 6-dimensional angular motion. This simply means, the mobile

apps that are developed using Gyroscope sensor are much likely to provide an alluring

user experience than the one without the sensor.

Page | 34

5.3.9 Enviornmental Sensors:

The Android platform provides four sensors that let you monitor various environmental

properties. You can use these sensors to monitor relative ambient humidity, illuminance,

ambient pressure, and ambient temperature near an Android-powered device. All four

environment sensors are hardware-based and are available only if a device manufacturer has

built them into a device. With the exception of the light sensor, which most device

manufacturers use to control screen brightness, environment sensors are not always available

on devices. Because of this, it's particularly important that you verify at runtime whether an

environment sensor exists before you attempt to acquire data from it.

Unlike most motion sensors and position sensors, which return a multi-dimensional array of

sensor values for each SensorEvent, environment sensors return a single sensor value for each

data event. For example, the temperature in °C or the pressure in hPa. Also, unlike motion

sensors and position sensors, which often require high-pass or low-pass filtering, environment

sensors do not typically require any data filtering or data processing.

Environmental sensors are connected objects capable of providing various types of

information: location, position, the individual’s movements and contextual elements which

can be compared to data collected via sensors embedded on or implanted in the individual,

including the validation of alarms, like in the case of falls. They pose particular ethical

problems as they are a type of surveillance which can affect the individual’s private life, even

their privacy, depending on where they are placed. This point is particularly sensitive in the

case of video capture. This type of sensor can also be associated with robotic devices with

which they interact to allow them to adapt to the context or the need of the person with whom

they are meant to interact. The monitoring of the individual and their health is not the first

objective for some sensors as air quality sensors, light sensors, smoke detectors, etc. exist.

However, data they collect can, by cross-referencing with data from other sources, contribute

to the production of potentially personalized health information, and eventually the generation

of alarms.

The raw data you acquire from the light, pressure, and temperature sensors usually requires no

calibration, filtering, or modification, which makes them some of the easiest sensors to use.

Page | 35

5.3.10 Ambient Temperature:

This sensor provides the ambient (room) temperature in degrees Celsius. Measuring air

temperature at a high spatial resolution is very important for many applications including

detection of urban heat islands. However, air temperature is currently measured by weather

stations those are very sparse spatially.

In this paper, we propose a new approach to estimate air temperature using smartphones in

different contexts. Most of the smartphones are not equipped with air temperature sensors but

they are all equipped with battery temperature sensors. When a smartphone is in idle state, its

battery temperature is stable and correlated with ambient air temperature. Furthermore, it is

often carried close to human body, e.g. in pockets of coats, trousers and in hand. Therefore we

developed a new approach of using two linear regression models to estimate air temperature

from the idle smartphones battery temperature given their in-pocket or out-of-pocket

positions.

Temperature is a physical quantity that is very important to human health. In urban areas due

to different concentration of roads, buildings and population, there exists urban heat islands.

An UHI is an urban area that is significantly warmer than its surroundings. The UHI has bad

consequences such as decreasing air quality, water quality and directly influencing human

health. Thus a number of UHI mitigation attempts have been made to improve Climate change

Crowdsourcing for environment data collection is a new approach due to availability of

sensor-equipped smartphones. Some models of smartphones, for example Samsung Galaxy

S4, Samsung Galaxy Note 3, Motorola Moto X, Huawei Ascend P6 and Xiaomi Mi3, are

equipped with environment sensors including temperature ones.

However, in an area with a small number of smartphones, the estimated temperature of the

app is not very accurate. Furthermore, this approach provides aggregated temperature of an

area from a large number of smartphone battery temperature readings rather than its

temperature distribution.

When a smartphone is in idle state, its battery temperature is stable and is correlated with

ambient air temperature. An idle state of a smartphone is the one that is achieved when the

smartphone is unplugged, its screen is off and its battery temperature variance in a temporal

window is small enough. When the smartphone is not idle, its battery temperature fluctuates

and depends highly on many factors, for example CPU load, screen brightness level, 3G/WiFi

and GPS status. Battery temperature of an idle smartphone is considered data and that of a

non-idle one is noise. Air temperature prediction models will be built based on the data only.

Page | 36

5.3.11 Ambient Light Sensor:

An ambient light sensor is a component in smartphones, notebooks, other mobile devices,

automotive displays and LCD TVs. It is a photodetector that is used to sense the amount of

ambient light present, and appropriately dim the device's screen to match it. This avoids

having the screen be too bright when the user's pupils are adapted for vision in a dark room, or

too dim when the device is used outdoors in the daytime. Dimming the screen on a mobile

device also prolongs the lifetime of the battery.

The standard international unit for the illuminance of ambient light is the lux. The typical

performance of an ambient light sensor is from less than 50 lux in dim light to over 10,000 lux

at noon.

There are three common types of ambient light sensor: phototransistors, photodiodes, and

photonic integrated circuits, which integrate a photodetector and an amplifier in one device.

The sensor is a light-dependent resistor (LDR). which has a resistance that varies with

ambient light intensity. The ALS provides measurements of ambient light intensity which

match the human eye's response to light under a variety of lighting conditions, and through a

variety of attenuation materials.

The light sensor detects the lighting levels in the vicinity to adjust the display brightness

accordingly. It is used in Automatic Brightness Adjuster to decrease or increase the brightness

of the smartphone screen based on the availability of light.

The Ambient Light Sensor (ALS) products from ams provide measurements of ambient light

intensity which match the human eye's response to light under a variety of lighting conditions.

Each device has a specific operating range of performance, from very low light up to bright

sunlight.

Light sensors have a lot of uses. The most common use in our daily lives is in cell phones and

tablets. Most portable personal electronics now have ambient light sensors used to adjust

brightness.

Page | 37

5.3.12 Atmospheric Pressure Sensor:

A barometric pressure sensor for smartphones, wearable and hearable devices.

 The BMP390 delivers altitude tracking in smartphones as well as wearable and hearable

devices.The sensor can measure height changes below 10 cm.

This is accomplished by applying barometric pressure sensors in the phone, like the Bosch

BMP390, and combining them with NextNav’s Metropolitan Beacon System (MBS) z-axis

service to determine three-dimensional location and positioning.

 Not limited to emergency applications, the sensor also enables improved indoor navigation in

general, for example in combination with the Position Tracking Smart Sensor

BHI160BP.These navigation solutions compensate for traditional localization technologies

such as GPS that do not work efficiently in shielded environments.

This will help users to save time and avoid the hassle of getting lost, for example when

searching for their car in an underground garage.

The device supports enhanced GPS applications for outdoor navigation and calorie

expenditure estimation tasks.

The use of advanced barometric pressure sensing can determine whether a user is walking up

or down an incline, stairs or lifting weights during a fitness training session.

This helps to increase the precision of calorie tracking by up to 15 percent2. Thanks to the

improved accuracy of altitude measurements, fitness trackers are able to show exactly how far

a user has run, walked or cycled.

The device provides a typical relative accuracy of ±0.03 hPa, which is superior to any other

comparable product on the market today.

Typical absolute accuracy is ±0.5 hPa. The excellent accuracy is the result of significant

improvements in temperature stability, drift behavior and noise.

The sensor offers high temperature stability across its entire operating temperature and

pressure range of 0 to 65 °C and 700 to 1100 hPa respectively, with an average temperature

coefficient offset (TCO) of just ±0.6 Pa/K. Noise is also low, at only 0.9 Pa typical, an

improvement of 25 percent relative to the predecessor BMP380. The device also provides

high long-term stability, and low short- and long-term drift.

Its measures 2.0 mm x 2.0 mm x 0.75 mm, which makes the sensor easy to integrate into

portable devices.

Power consumption is kept at 3.2 μA at 1 Hz (typical) to maximize battery life on portable

devices.

Page | 38

5.3.13 Magnetic Field sensor:

A MEMS magnetic field sensor is a small-scale microelectromechanical systems (MEMS)

device for detecting and measuring magnetic fields (Magnetometer). Many of these operate by

detecting effects of the Lorentz force: a change in voltage or resonant frequency may be

measured electronically, or a mechanical displacement may be measured optically.

Compensation for temperature effects is necessary. Its use as a miniaturized compass

The Magnetic Field Sensor can be used to study the field around permanent magnets, coils,

and electrical devices. It features a rotating sensor tip to measure both transverse and

longitudinal magnetic fields.

• Magnetic Field Senseing:

Magnetometers can be categorized into four general types[1] depending on the

magnitude of the measured field. If the targeted B-field is larger than the earth

magnetic field (maximum value around 60 μT), the sensor does not need to be very

sensitive. To measure the earth field larger than the geomagnetic noise(around 0.1

nT), better sensors are required. For the application of magnetic anomaly detection,

sensors at different locations have to be used to cancel the spatial-correlated noise in

order to achieve a better spatial resolution. To measure the field below the

geomagnetic noise, much more sensitive magnetic field sensors have to be employed.

These sensors are mainly used in medical and biomedical applications, such as MRI

and molecule tagging.

• Advantages of MEMS-based sensors:

A MEMS-based magnetic field sensor is small, so it can be placed close to the

measurement location and thereby achieve higher spatial resolution than other

magnetic field sensors. Additionally, constructing a MEMS magnetic field sensor

does not require the microfabrication of magnetic material. Therefore, the cost of the

sensor can be greatly reduced. Integration of MEMS sensor and microelectronics can

further reduce the size of the entire magnetic field sensing system.

• Application:

Detect flaws of electrically conductive material:

Magnetometers based on piezoelectric resonators can be applied to finding flaws in

safety-critical metal structures, such as airplane propellers, engines, fuselage and wing

structures, or high pressure oil or gas pipelines.

Monitoring health of organs of thoracic cavity:

When we breathe, the nerves and muscles of our thoracic cavity create a weak

magnetic field. Magnetometers based on piezoelectric resonators have high resolution

(in the range of nT), allowing solid-state sensing of our respiratory system.

Page | 39

5.3.14 Miscellanous Sensor:

• Relative humidity

Reporting-mode: On-change

A relative humidity sensor measures relative ambient air humidity and returns a value

in percent.

• Linear acceleration

Reporting-mode: Continuous

Underlying physical sensors: Accelerometer and (if present) gyroscope (or

magnetometer if gyroscope not present)

A linear acceleration sensor reports the linear acceleration of the device in the sensor

frame, not including gravity. Readings on all axes should be close to 0 when the

device is immobile.

If the device possesses a gyroscope, the linear acceleration sensor must use the

gyroscope and accelerometer as input.

If the device doesn’t possess a gyroscope, the linear acceleration sensor must use the

accelerometer and the magnetometer as input

The output is conceptually: output of the accelerometer minus the output of the

gravity sensor. It's reported in m/s^2 in the x, y, and z fields.

• Significant Motion:

Reporting-mode: One-shot

A significant motion detector triggers when detecting a significant motion: a motion

that might lead to a change in the user location.

Examples of such significant motions are:

• Walking or biking

• Sitting in a moving car, coach, or train

Examples of situations that don't trigger significant motion:

• Phone in pocket and person isn't moving

• Phone is on a table and the table shakes a bit due to nearby traffic or washing machine

Page | 40

At the high level, the significant motion detector is used to reduce the power

consumption of location determination. When the localization algorithms detect that

the device is static, they can switch to a low-power mode, where they rely on

significant motion to wake the device up when the user is changing location.

This sensor must be low power. It makes a tradeoff for power consumption that may

result in a small amount of false negatives. This is done for a few reasons:

The goal of this sensor is to save power.

Triggering an event when the user isn't moving (false positive) is costly in terms of

power, so it should be avoided.

Not triggering an event when the user is moving (false negative) is acceptable as long

as it isn't done repeatedly. If the user has been walking for 10 seconds, not triggering

an event within those 10 seconds isn't acceptable.

• Step Detector:

Reporting-mode: Special

A step detector generates an event each time a step is taken by the user.

The timestamp of the event timestamp corresponds to when the foot hit the ground,

generating a high variation in acceleration.

Compared to the step counter, the step detector should have a lower latency (less than

two seconds). Both the step detector and the step counter detect when the user is

walking, running, and walking up the stairs. They shouldn't trigger when the user is

biking, driving, or in other vehicles.

This sensor must be low power. That is, if the step detection cannot be done in

hardware, this sensor shouldn't be defined. In particular, when the step detector is

activated and the accelerometer isn't, only steps should trigger interrupts (not every

accelerometer reading).Each sensor event reports 1.

• Step Counter :

Reporting-mode: On-change

A step counter reports the number of steps taken by the user since the last reboot

while activated. The timestamp of the event is set to the time when the last step for

that event was taken. Compared to the step detector, the step counter can have a

higher latency (up to 10 seconds). Thanks to this latency, this sensor has a high

accuracy; the step count after a full day of measures should be within 10% of the

actual step count. Both the step detector and the step counter detect when the user is

walking, running, and walking up the stairs. They shouldn't trigger when the user is

biking, driving, or in other vehicles.

Page | 41

The hardware must ensure the internal step count never overflows. The minimum size

of the hardware's internal counter shall be 16 bits. In case of imminent overflow (at

most every ~2^16 steps), the SoC can be woken up so the driver can do the counter

maintenance. As stated in Interaction, while this sensor operates, it shall not disrupt

any other sensors, in particular, the accelerometer, which might very well be in use.

If a particular device can't support these modes of operation, then this sensor type

must not be reported by the HAL. That is, it isn't acceptable to "emulate" this sensor

in the HAL.

This sensor must be low power. That is, if the step detection can't be done in

hardware, this sensor shouldn't be defined. In particular, when the step counter is

activated and the accelerometer isn't, only steps should trigger interrupts (not

accelerometer data).

• Tilt Detector:

Reporting-mode: Special

A tilt detector generates an event each time a tilt event is detected.

A tilt event is defined by the direction of the 2-seconds window average gravity

changing by at least 35 degrees since the activation or the last event generated by the

sensor.

Large accelerations without a change in phone orientation shouldn't trigger a tilt

event. For example, a sharp turn or strong acceleration while driving a car shouldn't

trigger a tilt event, even though the angle of the average acceleration might vary by

more than 35 degrees. Typically, this sensor is implemented with the help of only an

accelerometer. Other sensors can be used as well if they do not increase the power

consumption significantly. This is a low-power sensor that should allow the SoC to go

into suspend mode. Do not emulate this sensor in the HAL. Each sensor event

reportTrigger when angle(reference_estimated_gravity, current_estimated_gravity) >

35 degreest

• Reference_estimated_gravity = average of accelerometer measurements over the

first second after activation or the estimated gravity when the last tilt event was

generated

• current_estimated_gravity = average of accelerometer measurements over the last 2

seconds.

Page | 42

• Rotation vector

Underlying physical sensors: Accelerometer, magnetometer, and gyroscope

Reporting-mode: Continuous

A rotation vector sensor reports the orientation of the device relative to the East-

North-Up coordinates frame. It's usually obtained by integration of accelerometer,

gyroscope, and magnetometer readings. The East-North-Up coordinate system is

defined as a direct orthonormal basis where:

• X points east and is tangential to the ground.

• Y points north and is tangential to the ground.

• Z points towards the sky and is perpendicular to the ground.

The orientation of the phone is represented by the rotation necessary to align the East-

North-Up coordinates with the phone's coordinates. That is, applying the rotation to

the world frame (X,Y,Z) would align them with the phone coordinates (x,y,z).

The rotation can be seen as rotating the phone by an angle theta around an axis

rot_axis to go from the reference (East-North-Up aligned) device orientation to the

current device orientation.

The rotation is encoded as the four unit-less x, y, z, w components of a unit

quaternion:

• sensors_event_t.data = rot_axis.x*sin(theta/2)

• sensors_event_t.data = rot_axis.y*sin(theta/2)

• sensors_event_t.data = rot_axis.z*sin(theta/2)

• sensors_event_t.data = cos(theta/2)

Where. The x, y, and z fields of rot_axis are the East-North-Up coordinates of a unit

length vector representing the rotation axis theta is the rotation angle

The quaternion is a unit quaternion: It must be of norm 1. Failure to ensure this will

cause erratic client behavior.

In addition, this sensor reports an estimated heading accuracy:

The heading error must be less than estimated_accuracy 95% of the time. This sensor

must use a gyroscope as the main orientation change input.

This sensor also uses accelerometer and magnetometer input to make up for

gyroscope drift, and it can't be implemented using only the accelerometer and

magnetometer.

Page | 43

• Game rotation vector

Underlying physical sensors: Accelerometer and gyroscope (no magnetometer)

Reporting-mode: Continuous

A game rotation vector sensor is similar to a rotation vector sensor but not using the

geomagnetic field. Therefore the Y axis doesn't point north but instead to some other

reference. That reference is allowed to drift by the same order of magnitude as the

gyroscope drifts around the Z axis.

In an ideal case, a phone rotated and returned to the same real-world orientation

should report the same game rotation vector.

This sensor must be based on a gyroscope and an accelerometer. It can't use

magnetometer as an input, besides, indirectly, through estimation of the gyroscope

bias.

• Gravity

Underlying physical sensors: Accelerometer and (if present) gyroscope (or

magnetometer if gyroscope not present)

Reporting-mode: Continuous

A gravity sensor reports the direction and magnitude of gravity in the device's

coordinates.

The gravity vector components are reported in m/s^2 in the x, y, and z fields

When the device is at rest, the output of the gravity sensor should be identical to that

of the accelerometer.

On Earth, the magnitude is around 9.8 m/s^2.

If the device possesses a gyroscope, the gravity sensor must use the gyroscope and

accelerometer as input.

If the device doesn’t possess a gyroscope, the gravity sensor must use the

accelerometer and the magnetometer as input.

Page | 44

• Geomagnetic rotation vector

Underlying physical sensors: Accelerometer and magnetometer (no gyroscope)

Reporting-mode: Continuous

A geomagnetic rotation vector is similar to a rotation vector sensor but using a

magnetometer and no gyroscope.

This sensor must be based on a magnetometer. It can't be implemented using a

gyroscope, and gyroscope input can't be used by this sensor.

Just like for the rotation vector sensor, the heading error must be less than the

estimated accuracy 95% of the time.

This sensor must be low power, so it has to be implemented in hardware.

• Orientation (deprecated)

Underlying physical sensors: Accelerometer, magnetometer and (if present)

gyroscope

Reporting-mode: Continuous

This is an older sensor type that has been deprecated in the Android SDK. It has been

replaced by the rotation vector sensor, which is more clearly defined. Use the rotation

vector sensor over the orientation sensor whenever possible.

An orientation sensor reports the attitude of the device. The measurements are

reported in degrees in the x, y, and z fields of sensors event orientation:

• Sensors_event_t.orientation.x:

 Azimuth, the angle between the magnetic north direction and the Y axis, around the

Z axis (0<=azimuth<360). 0=North, 90=East, 180=South, 270=West.

•Sensors_event_t.orientation.y:

 pitch, rotation around X axis (-180<=pitch<=180), with positive values when the Z

axis moves toward the Y axis.

•Sensors_event_t.orientation.z: roll, rotation around Y axis (-90<=roll<=90), with

positive values when the X axis moves towards the Z axis.

This definition is different from yaw, pitch, and roll used in aviation where the X axis

is along the long side of the plane (tail to nose).

The orientation sensor also reports how accurate it expects its readings to be through

sensors_event_t.orientation.status

Page | 45

• Uncalibrated sensors

Uncalibrated sensors:

 Provide more raw results and may include some bias but also contain fewer "jumps"

from corrections applied through calibration.

 uncalibrated results as smoother and more reliable. For instance, if an app is

attempting to conduct its own sensor fusion, introducing calibrations can actually

distort results.

• Accelerometer uncalibrated:

Underlying physical sensor: Accelerometer

Reporting-mode: Continuous

An uncalibrated accelerometer sensor reports the acceleration of the device along the

three sensor axes without any bias correction (factory bias and temperature

compensation are applied to uncalibrated measurements), along with a bias estimate.

All values are in SI units (m/s^2) and are reported in the fields of

sensors_event_t.uncalibrated_accelerometer:

•X_uncalib: Acceleration (without bias compensation) along the X axis

•Y_uncalib: Aceleration (without bias compensation) along the Y axis

•Z_uncalib: Acceleration (without bias compensation) along the Z axis

•X_bias: Estimated bias along X axis

•Y_bias: Estimated bias along Y axis

•Z_bias: Estimated bias along Z axis

Page | 46

• Gyroscope uncalibrated

Underlying physical sensor: Gyroscope

Reporting-mode: Continuous

An uncalibrated gyroscope reports the rate of rotation around the sensor axes without

applying bias compensation to them, along with a bias estimate. All values are in

radians/second and are reported in the fields of sensors_event_t.uncalibrated_gyro:

• x_uncalib: angular speed (without drift compensation) around the X axis

• y_uncalib: angular speed (without drift compensation) around the Y axis

• z_uncalib: angular speed (without drift compensation) around the Z axis

• x_bias: estimated drift around X axis

• y_bias: estimated drift around Y axis

• z_bias: estimated drift around Z axis

Conceptually, the uncalibrated measurement is the sum of the calibrated measurement

and the bias estimate: _uncalibrated = _calibrated + _bias.

The x_bias, y_bias and z_bias values are expected to jump as soon as the estimate of

the bias changes, and they should be stable the rest of the time.

Factory calibration and temperature compensation must be applied to the

measurements. Also, gyroscope drift estimation must be implemented so that

reasonable estimates can be reported in x_bias, y_bias and z_bias. If the

implementation isn't able to estimate the drift, then this sensor must not be

implemented.

If this sensor is present, then the corresponding Gyroscope sensor must also be

present and both sensors must share the same sensor_t.name and sensor_t.vendor

values.

Page | 47

• Magnetic field uncalibrated

Underlying physical sensor: Magnetometer

Reporting-mode: Continuous

An uncalibrated magnetic field sensor reports the ambient magnetic field together

with a hard iron calibration estimate. All values are in micro-Tesla (uT) and are

reported in the fields of sensors_event_t.uncalibrated_magnetic:

• x_uncalib: Magnetic field (without hard-iron compensation) along the X axis

• y_uncalib: Magnetic field (without hard-iron compensation) along the Y axis

• z_uncalib: Magnetic field (without hard-iron compensation) along the Z axis

• x_bias: Estimated hard-iron bias along the X axis

• y_bias: Estimated hard-iron bias along the Y axis

• z_bias: Estimated hard-iron bias along the Z axis

Conceptually, the uncalibrated measurement is the sum of the calibrated measurement

and the bias estimate: _uncalibrated = _calibrated + _bias.

The uncalibrated magnetometer allows higher level algorithms to handle bad hard

iron estimation.

The x_bias, y_bias and z_bias values are expected to jump as soon as the estimate of

the hard-iron changes, and they should be stable the rest of the time.

Soft-iron calibration and temperature compensation must be applied to the

measurements. Also, hard-iron estimation must be implemented so that reasonable

estimates can be reported in x_bias, y_bias and z_bias. If the implementation isn't

able to estimate the bias, then this sensor must not be implemented.

If this sensor is present, then the corresponding magnetic field sensor must be present

and both sensors must share the same sensor_t.name and sensor_t.vendor values.

Page | 48

• Hinge angle:

Reporting-mode: On-change

A hinge angle sensor measures the angle, in degrees, between two integral parts of the

device. Movement of a hinge measured by this sensor type is expected to alter the

ways in which the user can interact with the device, for example, by unfolding or

revealing a display.

Some sensors are mostly used to detect interactions with the user. We don't define

how those sensors must be implemented, but they must be low power and it's the

responsibility of the device manufacturer to verify their quality in terms of user

experience.

• Wake up gesture:

Underlying physical sensors: Undefined (anything low power)

Reporting-mode: One-shot

Low-power

Implement only the wake-up version of this sensor.

A wake up gesture sensor enables waking up the device based on a device specific

motion. When this sensor triggers, the device behaves as if the power button was

pressed, turning the screen on. This behavior (turning on the screen when this sensor

triggers) might be deactivated by the user in the device settings. Changes in settings

don't impact the behavior of the sensor: only whether the framework turns the screen

on when it triggers. The actual gesture to be detected isn't specified, and can be

chosen by the manufacturer of the device.

This sensor must be low power, as it's likely to be activated 24/7.

Each sensor event reports 1

• Pick up gesture:

Underlying physical sensors: Undefined (anything low power)

Reporting-mode: One-shot

Low-power

Implement only the wake-up version of this sensor.

A pick-up gesture sensor triggers when the device is picked up regardless of wherever

it was before (desk, pocket, bag).

Each sensor event reports 1 in sensors_event_t.data

Page | 49

• Glance gesture:

Underlying physical sensors: Undefined (anything low power)

Reporting-mode: One-shot

Implement only the wake-up version of this sensor.

A glance gesture sensor enables briefly turning the screen on to enable the user to

glance content on screen based on a specific motion. When this sensor triggers, the

device will turn the screen on momentarily to allow the user to glance notifications or

other content while the device remains locked in a non-interactive state (dozing), then

the screen will turn off again. This behavior (briefly turning on the screen when this

sensor triggers) might be deactivated by the user in the device settings. Changes in

settings do not impact the behavior of the sensor: only whether the framework briefly

turns the screen on when it triggers. The actual gesture to be detected isn't specified,

and can be chosen by the manufacturer of the device.

Page | 50

Chapter 6

Output Images And Analysis

Figure:1(Device Report 1)

Page | 51

Figure:2 (Device Report 2)

Figure:3(Device Report 3)

Page | 52

Figure:4(Device Report 4)

Figure6(Device Report 6)

Page | 53

Figur

Figure:5(Device Report 5)

Figure7:(Device Report 7)

Page | 54

Figure 8(Acceleration)

Page | 55

Figure 9(Gyroscope)

Page | 56

fbdb

Figure 10:(Illuminace)

Page | 57

Figure 11 (Magnectic Field)

Figure 12 : (Orientation)

Page | 58

Figure 13 : (Proximity)

Figure 14 : (Step Counter)

Page | 59

Accelerometer Uncalibrated

Page | 60

Accelerometer Uncalibrated After 20 Sec

Page | 61

Accelerometer Uncalibrated After 20 Sec

Page | 62

Gyroscope Uncalibrated

Page | 63

Light or Illuminace

Page | 64

Rotation Vector

Page | 65

Linear Acceleration

Page | 66

GPS(location Sensor)

Page | 67

Accelrometer Uncalibrated after 20 Sec

Page | 68

Live Data of Your Sensor present in your Phone through Web site

Page | 69

Conclusion

• This is how you can use uBeac to create a dashboard from your phone's sensors.

Now you can use it for numerous projects, such as keeping track of where and

how you have traveled to and from work, and what you can do to optimize your

trip.

Page | 70

References
• https://app.ubeac.io/gatewaydata

• https://www.hackster.io/amir-pournasserian/iot-dashboards-for-sensors-on-android-

device-using-ubeac-b207a5

• https://app.ubeac.io/devices/new

• https://play.google.com/store/apps/details?id=tech.unismart.dc&hl=en&gl=US

• https://source.android.com/devices/sensors/report-modes#on-change

• https://source.android.com/devices/sensors/sensor-types#gyroscope

• https://www.phonegg.com/list/302-Cell-Phones-with-Humidity-Sensor

• https://www.google.com/search?q=ambient+humidity+sensor&oq=ambient+Humidit

y+Sensor&aqs=chrome.0.0j0i22i30l4.6065j0j7&sourceid=chrome&ie=UTF-8

• https://en.wikipedia.org/wiki/MEMS_magnetic_field_sensor

• https://developer.android.com/guide/topics/sensors/sensors_position

• https://www.newscientist.com/article/dn25844-magnetic-messages-let-smartphones-

receive-secret-

data/#:~:text=A%20system%20called%20Pulse%20uses,produced%20by%20a%20ne

arby%20electromagnet.

• https://www.google.com/search?sxsrf=ALeKk024ow5POVzUa5rg7imeT4jEEx4UY

w%3A1607348575075&ei=XzHOX6yNBNyG4-

EP_ZmZoAM&q=atmospheric+pressure+sensor+in++phones&oq=atmospheric+pres

sure+sensor+in++phones&gs_lcp=CgZwc3ktYWIQAzIGCAAQFhAeOgQIABBHOg

QIABBDOgIIADoICCEQFhAdEB5QlGpYgJEBYJ2SAWgAcAJ4AIAByQGIAY4O

kgEFMC45LjGYAQCgAQGqAQdnd3Mtd2l6yAEIwAEB&sclient=psy-

ab&ved=0ahUKEwjsuOOGgLztAhVcwzgGHf1MBjQQ4dUDCA0&uact=5

• https://www.google.com/search?sxsrf=ALeKk03p1P3QlxTpD2nBkNQmMVp9_uP6

yA%3A1607347348022&ei=lCzOX5Zzy6_IA4X5sTg&q=atmospheric+pressure+sen

sor&oq=Atmosperic+Pressure&gs_lcp=CgZwc3ktYWIQAxgAMgQIABBDMgcIAB

CxAxBDMgQIABAKMgQIABAKMgQIABAKMgQIABAKMgcIABCxAxAKMgQ

IABBDMgQIABAKMgcIABCxAxAKOgQIABBHOgcIIxDqAhAnOgcILhDqAhAn

OgQIIxAnOgUIABCRAjoECC4QQzoHCC4QJxCTAjoKCAAQsQMQFBCHAjoKC

AAQsQMQyQMQQzoICAAQkgMQiwM6CggAELEDEEMQiwM6DgguELEDEIM

BEMcBEK8BOgIIADoQCC4QsQMQgwEQxwEQrwEQClCu3B1YlZceYO-

hHmgBcAJ4AIAB3wGIAY8akgEGMC4xNi4zmAEAoAEBqgEHZ3dzLXdperABCs

gBCLgBAsABAQ&sclient=psy-ab

• https://www.google.com/search?q=Ambient+light+sensor+in+phones&oq=Ambient+

light+sensor+in+phones&aqs=chrome..69i57j0i22i30l4.6939j0j7&sourceid=chrome&

ie=UTF-8

https://www.google.com/search?q=Ambient+light+sensor+in+phones&oq=Ambient+light+sensor+in+phones&aqs=chrome..69i57j0i22i30l4.6939j0j7&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=Ambient+light+sensor+in+phones&oq=Ambient+light+sensor+in+phones&aqs=chrome..69i57j0i22i30l4.6939j0j7&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=Ambient+light+sensor+in+phones&oq=Ambient+light+sensor+in+phones&aqs=chrome..69i57j0i22i30l4.6939j0j7&sourceid=chrome&ie=UTF-8

Page | 71

Thank You

CERTIFICATE OF INTERNSHIP

Certificate No.: IIP-Kolkata/HIT/Internship/2021-22/B1-073

This is to confirm that

MALEPATI VISHNU VARDHAN CHOUDARY

has participated in the following internship course and passed the internal and external

assessments necessary for successful completion.

INDIAN INSTITUTE OF PACKAGING (IIP) APPROVED INTERNSHIP TRAINING ON:

EMERGING TRENDS & INNOVATIVE FOOD PACKAGING TECHNOLOGIES IN FOOD

INDUSTRIAL PRACTICES

Organized in collaboration with the Department of Food Technology, Haldia Institute of

Technology and supported by Food Safety and Standards Authority of India (FSSAI) from

19 June – 11 July 2021 (Every Saturday & Sunday – total 24 hrs.)

Tutors: Dr. Tanweer Alam, Mr. Bidhan Das and Mr. Shubhabrata Basu

Course description/Focus areas:

• Definition and Functions of Packaging

• Mechanical Strength of Different Packaging Materials, Printing and Barcodes

• Quality Control Testing of Packaging Materials

• The Physical and Chemical Properties of the Packaging Materials

• Packaging & Labelling Regulations in Food Industry

• Advances in Emerging Packaging Technologies

• Packaging Requirements of Different Categories of Food and Beverages

• Safety Considerations in Food Packaging and Shelf-life Evaluation

Place and date: Kolkata, August 2, 2021

Delivery Type: Virtual Classroom Signed on behalf of

 Indian Institute of Packaging (IIP)

 Bidhan Das

 Deputy Director & Regional Head

CERTIFICATE OF INTERNSHIP

Certificate No.: IIP-Kolkata/HIT/Internship/2021-22/B1-102

This is to confirm that

RADHAKRISHNAN DASH

has participated in the following internship course and passed the internal and external

assessments necessary for successful completion.

INDIAN INSTITUTE OF PACKAGING (IIP) APPROVED INTERNSHIP TRAINING ON:

EMERGING TRENDS & INNOVATIVE FOOD PACKAGING TECHNOLOGIES IN FOOD

INDUSTRIAL PRACTICES

Organized in collaboration with the Department of Food Technology, Haldia Institute of

Technology and supported by Food Safety and Standards Authority of India (FSSAI) from

19 June – 11 July 2021 (Every Saturday & Sunday – total 24 hrs.)

Tutors: Dr. Tanweer Alam, Mr. Bidhan Das and Mr. Shubhabrata Basu

Course description/Focus areas:

• Definition and Functions of Packaging

• Mechanical Strength of Different Packaging Materials, Printing and Barcodes

• Quality Control Testing of Packaging Materials

• The Physical and Chemical Properties of the Packaging Materials

• Packaging & Labelling Regulations in Food Industry

• Advances in Emerging Packaging Technologies

• Packaging Requirements of Different Categories of Food and Beverages

• Safety Considerations in Food Packaging and Shelf-life Evaluation

Place and date: Kolkata, August 2, 2021

Delivery Type: Virtual Classroom Signed on behalf of

 Indian Institute of Packaging (IIP)

 Bidhan Das

 Deputy Director & Regional Head

