## Prediction of Mechanical properties for a composite of bisphen\_dimeth\_carbonate and cyclopentylm

Prajna Paramita Samal<sup>1</sup>, Dojalisa Sahu<sup>2</sup>

<sup>1</sup>190705100012@cutm.ac.in, <sup>2</sup>dojalisa.sahu@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Mechanical properties of a polymer composite consisting of bisphen\_dimeth\_carbonate and cyclopentylm. Synthia module of Biovia Materials Studio software was used to predict Bulk modulus, Young's modulus, Shear modulus, Poisson's ratio and Cohesive energy (Fedors) at 298K of the composite.

Objective: In this study the effect of mixing of bisphen\_dimeth\_carbonate and cyclopentylm on the following properties have been predicted.

- a. Bulk modulus
- b. Young's modulus
- c. Shear modulus
- d. Poisson's ratio
- e. Cohesive energy (Fedors) at 298K

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen\_dimeth\_carbonate (Monomer 1) on the Mechanical properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen\_dimeth\_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Table 1. Properties of composite of bisphen\_dimeth\_carbonate and cyclopentylm

| Property |        | Results for            |                        |                        |
|----------|--------|------------------------|------------------------|------------------------|
| Name     | Unit   | 0.0 weight fraction of | 0.5 weight fraction of | 1.0 weight fraction of |
|          |        | bisphen_dimeth_carbon  | bisphen_dimeth_carbon  | bisphen_dimeth_carbon  |
|          |        | ate                    | ate                    | ate                    |
| Bulk     | newton | 3364.420               | 3676.825               | 4031.244               |
| modulu   | s per  |                        |                        |                        |
| s        | square |                        |                        |                        |
|          | metre  |                        |                        |                        |

Centurion Journal of Multidisciplinary Research Special issue: Nov 2020

ISSN: 2395-6216