Prediction of Optical, electrical and thermal properties for a composite of bisphen_dimeth_carbonate and oxyphenyl

Anjali Sahoo¹, Dr Padmaja Pattanayak²

¹180705120029@cutm.ac.in, ²padmaja.patnaik@cutm.ac.in

Centurion University of Technology and Management, Odisha, India

Abstract: A computational study has been done to predict Optical, electrical and thermal properties of a polymer composite consisting of bisphen_dimeth_carbonate and oxyphenyl. Synthia module of Biovia Materials Studio software was used to predict Refractive index, Volume resistivity, Dielectric constant, Coefficient of volumetric thermal expansion and Thermal conductivity of the composite.

Objective: In this study the effect of mixing of bisphen_dimeth_carbonate and oxyphenyl on the following properties have been predicted.

- a. Refractive index
- b. Volume resistivity
- c. Dielectric constant
- d. Coefficient of volumetric thermal expansion
- e. Thermal conductivity

The weight fractions of the monomers were varied in the range of 0 to 1.

Software used: Synthia module of Biovia Materials Studio software (Dassault Systemes, France) was used for the study.

Results and Discussion: The effect of weight fraction of bisphen_dimeth_carbonate (Monomer 1) on the Optical, electrical and thermal properties of the composite has been presented in Table 1. The predicted properties of the composite for 0, 0.5 and 1.0 weight fractions of bisphen_dimeth_carbonate have been summarized in Table 1. The rate of change for the properties have been summarized in Table 2.

Property		Results for		
Name	Unit	0.0 weight fraction of	0.5 weight fraction of	1.0 weight fraction of
		bisphen_dimeth_carbo	bisphen_dimeth_carbo	bisphen_dimeth_carbo
		nate	nate	nate
Refractive	0	1.621	1.604	1.587
index				
Volume	Ohm-	18250860000000000.000	16820650000000000.000	155017300000000000.000
resistivity	metre			

Centurion Journal of Multidisciplinary Research Special issue: Nov 2020 ISSN: 2395-6216